Difference between revisions of "Forest UCM CoV"

From New IAC Wiki
Jump to navigation Jump to search
Line 27: Line 27:
  
 
:<math>t = \int_A^I \frac{n_1}{c} ds+ \int_I^B \frac{n_2}{c} ds </math>
 
:<math>t = \int_A^I \frac{n_1}{c} ds+ \int_I^B \frac{n_2}{c} ds </math>
 +
::<math>= \frac{n_1}{c}\int_A^I  ds+ \frac{n_2}{c} \int_I^B  ds </math>
 +
::<math>= \frac{n_1}{c}\sqrt{h_1^2 + x^2}+ \frac{n_2}{c} \sqrt{h_2^2 + (\ell -x)^2} </math>
  
  

Revision as of 11:55, 13 October 2014

Calculus of Variations

Fermat's Principle

Fermats principle is thatlight takes a path between two points that requires the least amount of time.


If we let S represent the path of light between two points then

[math]S=vt[/math]

light takes the time [math]t[/math] to travel between two points can be expressed as

[math]t = \int_A^B dt =\int_A^B \frac{1}{v} ds [/math]


The index of refraction is denoted as

[math]n=\frac{c}{v}[/math]


[math]t = \int_A^B \frac{n}{c} ds [/math]

for light traversing an interface with an nindex of refraction $n_1$ on one side and $n_2$ on the other side we would hav e

[math]t = \int_A^I \frac{n_1}{c} ds+ \int_I^B \frac{n_2}{c} ds [/math]
[math]= \frac{n_1}{c}\int_A^I ds+ \frac{n_2}{c} \int_I^B ds [/math]
[math]= \frac{n_1}{c}\sqrt{h_1^2 + x^2}+ \frac{n_2}{c} \sqrt{h_2^2 + (\ell -x)^2} [/math]


http://scipp.ucsc.edu/~haber/ph5B/fermat09.pdf

Euler-Lagrange Equation

https://www.fields.utoronto.ca/programs/scientific/12-13/Marsden/FieldsSS2-FinalSlidesJuly2012.pdf

Forest_Ugrad_ClassicalMechanics