Difference between revisions of "ISU Coloq 11-3-2014"
Jump to navigation
Jump to search
Line 33: | Line 33: | ||
:<math>q_{\mu} \equiv ( \omega, \vec q) = P^i_{\mu} - P^f_{\mu}</math> : conservation of momentum | :<math>q_{\mu} \equiv ( \omega, \vec q) = P^i_{\mu} - P^f_{\mu}</math> : conservation of momentum | ||
− | : <math>q_{\mu}q^{\mu} = (E_i - E_f)^2 - (vec {P}_i - \vec{P}_f) \cdot (vec {P}_i - \vec{P}_f)</math> | + | : <math>q_{\mu}q^{\mu} = (E_i - E_f)^2 - (\vec {P}_i - \vec{P}_f) \cdot (\vec {P}_i - \vec{P}_f)</math> |
+ | :: <math>= m_i^2 +m_f^2 - 2E_iE_f + 2 \left | \vec {P}_i \right | \left | \vec {P}_f \right |</math> | ||
+ | |||
+ | |||
+ | |||
[[TF_SIDIS_Physics]] | [[TF_SIDIS_Physics]] |
Revision as of 19:59, 8 October 2014
Elastic -vs- Inelastic Collisisons
Elastic Collisions: Conserve P and E
Inelastic : Only Conserve P
Definition of Mission Mass
Definition of Momentum Transfer
4-Momentum vector definition using Ryder convention
- if you define the speed of light as unity
- Note
- Other conventions used by Perkins
or Kollen
Momentum transfer is defined as
- : conservation of momentum