Difference between revisions of "Forest UCM Osc Resonance"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
Oscillators friven by a source in resonance
+
Oscillators driven by a source in resonance
 +
 
 +
:<math>  \ddot x + 2 \beta \dot x + \omega^2_0x  = f(t)</math>
 +
 
 +
 
 +
==Complete Solution for the Sinusoidally Driven Damped oscillator==
 +
 
 +
:<math>x(t) =x_h + x_p = C_1 e^{r_1 t} + C_2 e^{r_2 t} + A \cos(\omega t-\delta)</math>
 +
 
 +
where
 +
 
 +
:<math>r_1 = - \beta + \sqrt{\beta^2 - \omega_0^2}</math>
 +
:<math>r_2 = - \beta + \sqrt{\beta^2 + \omega_0^2}</math>
 +
:<math>A=\frac{f_0} { \sqrt{(\omega_0^2 - \omega^2)^2 + 4  \beta^2 \omega^2  }}</math>
 +
:<math>\delta = \tan^{-1}\left ( \frac{2 \beta \omega}{(\omega_0^2- \omega^2)} \right )</math>
  
:<math>  \ddot x + 2 \beta \dot x + \omega^2_0x  = 0</math>
 
  
  

Revision as of 12:15, 8 October 2014

Oscillators driven by a source in resonance

¨x+2β˙x+ω20x=f(t)


Complete Solution for the Sinusoidally Driven Damped oscillator

x(t)=xh+xp=C1er1t+C2er2t+Acos(ωtδ)

where

r1=β+β2ω20
r2=β+β2+ω20
A=f0(ω20ω2)2+4β2ω2
δ=tan1(2βω(ω20ω2))


Quality factor (Q)

Forest_UCM_Osc#Resonance