Difference between revisions of "Forest UCM Osc Resonance"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
Oscillators friven by a source in resonance
+
Oscillators driven by a source in resonance
 +
 
 +
:<math>  \ddot x + 2 \beta \dot x + \omega^2_0x  = f(t)</math>
 +
 
 +
 
 +
==Complete Solution for the Sinusoidally Driven Damped oscillator==
 +
 
 +
:<math>x(t) =x_h + x_p = C_1 e^{r_1 t} + C_2 e^{r_2 t} + A \cos(\omega t-\delta)</math>
 +
 
 +
where
 +
 
 +
:<math>r_1 = - \beta + \sqrt{\beta^2 - \omega_0^2}</math>
 +
:<math>r_2 = - \beta + \sqrt{\beta^2 + \omega_0^2}</math>
 +
:<math>A=\frac{f_0} { \sqrt{(\omega_0^2 - \omega^2)^2 + 4  \beta^2 \omega^2  }}</math>
 +
:<math>\delta = \tan^{-1}\left ( \frac{2 \beta \omega}{(\omega_0^2- \omega^2)} \right )</math>
  
:<math>  \ddot x + 2 \beta \dot x + \omega^2_0x  = 0</math>
 
  
  

Revision as of 12:15, 8 October 2014

Oscillators driven by a source in resonance

[math] \ddot x + 2 \beta \dot x + \omega^2_0x = f(t)[/math]


Complete Solution for the Sinusoidally Driven Damped oscillator

[math]x(t) =x_h + x_p = C_1 e^{r_1 t} + C_2 e^{r_2 t} + A \cos(\omega t-\delta)[/math]

where

[math]r_1 = - \beta + \sqrt{\beta^2 - \omega_0^2}[/math]
[math]r_2 = - \beta + \sqrt{\beta^2 + \omega_0^2}[/math]
[math]A=\frac{f_0} { \sqrt{(\omega_0^2 - \omega^2)^2 + 4 \beta^2 \omega^2 }}[/math]
[math]\delta = \tan^{-1}\left ( \frac{2 \beta \omega}{(\omega_0^2- \omega^2)} \right )[/math]


Quality factor (Q)

Forest_UCM_Osc#Resonance