Difference between revisions of "Forest UCM Osc Damped"

From New IAC Wiki
Jump to navigation Jump to search
Line 94: Line 94:
  
 
:<math>  x=  \left ( C_1 e^{ \sqrt{\beta^2 -\omega^2_0} t} + C_2 e^{ -\sqrt{\beta^2 -\omega^2_0} t} \right) e^{- \beta t} </math>
 
:<math>  x=  \left ( C_1 e^{ \sqrt{\beta^2 -\omega^2_0} t} + C_2 e^{ -\sqrt{\beta^2 -\omega^2_0} t} \right) e^{- \beta t} </math>
::<math>  =  \left ( C_1 e^{ \left (-\beta +\sqrt{\beta^2 -\omega^2_0} \right ) t} + C_2 e^{ \left (\beta-\sqrt{\beta^2 -\omega^2_0} t \right )} \right) </math>
+
::<math>  =  \left ( C_1 e^{ \left (-\beta +\sqrt{\beta^2 -\omega^2_0} \right ) t} + C_2 e^{ \left (\beta-\sqrt{\beta^2 -\omega^2_0}\right )t} \right) </math>
  
  

Revision as of 13:38, 5 October 2014

1-D Damped Oscillations

Newton's 2nd Law

As in the case of air resistance, assume there is frictional force proportional to the velocity of the oscillation body.


\sum \vec{F}_{ext} = -k\vec r - b \vec \dot v = m \vec \ddot r
Fext=kxb˙x=m¨x: in 1-D

or

m¨x+kx+b˙x=0

or

¨x+kmx+bm˙x=0


let

km=ω20= undamped oscillation frequency
bm2β= damping constant

then

¨x+2β˙x+ω20x=0

Solve for the Equation of Motion

As see in section Forest_UCM_Osc_SHM#Equation_of_motion, you can determine solutions to the above by writing the analogous auxilary equation:

(O2+2βO+ω20)x=0Oddt

Setting the term in parentheses to zero and using the quadratic formula

O=2β±(2β)24ω202=β±β2ω20
(O+β+β2ω20)(O+ββ2ω20)x=0


You have change the second order differential equation into two first order differential equations

(ddt+β+β2ω20)x=0
dxx=(ββ2ω20)dt
x=e(ββ2ω20)t


(ddt+ββ2ω20)x=0
dxx=(β+β2ω20)dt
x=e(β+β2ω20)t

constructing a complete solution from the two solutions (orthogonal functions) above.

x=(C1eβ2ω20t+C2eβ2ω20t)eβt

Undamped oscillator

If β = 0

Then

x=(C1eβ2ω20t+C2eβ2ω20t)eβt
=(C1eiω0t+C2eiω0t) the SHM solution derived before at Forest_UCM_Osc_SHM#Equation_of_motion

Under damped Oscillator

β<ω0

In this case the term

β2ω20=(1)(ω20β2=iω20β2iω1



x=(C1eβ2ω20t+C2eβ2ω20t)eβt
=(C1eiω1t+C2eiω1t)eβt
=Aeβtcos(ω1tδ)


There are two terms above, the first term is an exponential decay and the secons is the usual harmonic oscilator.

They combine to produce oscillations whoase amplitudes decay with time.

Over damped Oscillator

β>ω0


x=(C1eβ2ω20t+C2eβ2ω20t)eβt
=(C1e(β+β2ω20)t+C2e(ββ2ω20)t)


For the overdamped case you have two exponentials

Critically damped Oscillator

β=ω0


x=(C1eβ2ω20t+C2eβ2ω20t)eβt

Forest_UCM_Osc#Damped_Oscillations