Difference between revisions of "Forest UCM Osc 2-DOsc"

From New IAC Wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
you could define a relative phase between the two oscillators as
 
you could define a relative phase between the two oscillators as
  
:\delta = \delta_y - \delta_x
+
:<math>\delta = \delta_y - \delta_x</math>
  
 
it can be substituted into the above equations by shifting the time origin (problem 5.15)
 
it can be substituted into the above equations by shifting the time origin (problem 5.15)
Line 38: Line 38:
 
::<math> =A_y \cos(\omega t^{\prime} - \omega \frac{-\delta_x}{\omega}  - \delta_x)</math>
 
::<math> =A_y \cos(\omega t^{\prime} - \omega \frac{-\delta_x}{\omega}  - \delta_x)</math>
 
::<math>= A_y \cos(\omega t^{\prime} +\delta_x - \delta_y)</math>
 
::<math>= A_y \cos(\omega t^{\prime} +\delta_x - \delta_y)</math>
::<math>= A_y \cos(\omega t^{\prime} +\delta)</math>
+
::<math>= A_y \cos(\omega t^{\prime} -\delta)</math>
  
 
==Interpretation==
 
==Interpretation==

Revision as of 15:45, 4 October 2014

Two Dimensional Oscillators

TF 2-D oscilator.png

Isotropic Oscillator

The simplest 2-D oscillator that is composed of identical springs (same spring constant).

[math] \vec F = -k( x \hat i + y \hat j)[/math]

The equations of motion are separable two equations, one for each direction

[math]\ddot x = - \omega^2x \Rightarrow x = A_x \cos(\omega t - \delta_x)[/math]
[math]\ddot y = - \omega^2 y \Rightarrow y = A_y \cos(\omega t - \delta_y)[/math]

you could define a relative phase between the two oscillators as

[math]\delta = \delta_y - \delta_x[/math]

it can be substituted into the above equations by shifting the time origin (problem 5.15)

let

[math]t^{\prime} = t + t_0[/math]

then

[math]x = A_x \cos(\omega t^{\prime} - \omega t_0 - \delta_x)[/math]

let

[math]t_0 = \frac{-\delta_x}{\omega}[/math]
[math] x=A_x \cos(\omega t^{\prime} - \omega\frac{-\delta_x}{\omega} - \delta_x)[/math]
[math] =A_x \cos(\omega t^{\prime})[/math]

similarly

[math]y = A_y \cos(\omega t^{\prime} - \omega t_0 - \delta_x)[/math]
[math] =A_y \cos(\omega t^{\prime} - \omega \frac{-\delta_x}{\omega} - \delta_x)[/math]
[math]= A_y \cos(\omega t^{\prime} +\delta_x - \delta_y)[/math]
[math]= A_y \cos(\omega t^{\prime} -\delta)[/math]

Interpretation

[math] =A_x \cos(\omega t^{\prime})[/math]
[math]= A_y \cos(\omega t^{\prime} -\delta)[/math]

There are several modes of motion for the above system of equation

No phase difference

If there is no phase difference then (\delta =0 ) and you have oscillating motion along a line.


TF 2-D Oscilator deltaZero.png

90 degree phase difference

If the x and y motions are completely out of phase ( phase difference of 90 degrees or [math]\frac{\pi}{2}[/math])

then the motion is an ellipse (unless their amplitudes are equal in which case the mass moves in a circle).


TF 2-D Oscilator delta90.png

[math] =A_x \cos(\omega t^{\prime})[/math]
[math]= A_y \cos(\omega t^{\prime} +\frac{\pi}{2})= A_y \sin(\omega t^{\prime})[/math]


If the phase shift is less than 90 then the ellipse is slanted towards the x-axis otherwise it is toward the y-axis.

Anisotropic Oscillator

Forest_UCM_Osc#2-D_Oscillators