Difference between revisions of "Forest UCM EnergyIntPart"
Line 53: | Line 53: | ||
==Total work given by one potential== | ==Total work given by one potential== | ||
+ | |||
+ | The total work is the sum of | ||
+ | |||
+ | :the work done by <math>\vec{F}_{12}</math> as object 1 moves through <math>d\vec{r}_1</math> | ||
+ | |||
+ | plus | ||
+ | |||
+ | :the work done by <math>\vec{F}_{21}</math> as object 1 moves through <math>d\vec{r}_2</math> | ||
=Elastic Collisions= | =Elastic Collisions= |
Revision as of 12:23, 29 September 2014
Energy of Interacting particles
Translational invariance
Consider two particles that interact via a conservative force
Let identify the location of object 1 from an arbitrary reference point and locate the second object.
The vector that points from object 2 to object 1 may be written as
The distance between the two object is given as the length of the above vector
If the force is a central force
- Notice
-
- The interparticle force is independent of the coordinate system's position, only the difference betweenthe positions matters
If object 2 was fixed so it is not accelerating and we place the origin of the coordinate system on object 2
Then the force is that of a single object
One potential for Both Particles
Both forces from same potential
If the above force is conservative then a potential exists such that
Newton's 3rd law requries that
or
- You can find the net external force on a body in the system once you have the potential for the system
Total work given by one potential
The total work is the sum of
- the work done by as object 1 moves through
plus
- the work done by as object 1 moves through
Elastic Collisions
Definition
BOTH Momentum and Energy are conserved in an elastic collision
- Example
Consider two object that collide elastically
- Conservation of Momentum
- Conservation of Energy
When the initial and final states are far away fromthe collision point
- arbitrary constant
Example
Consider an elastic collision between two equal mass objecs one of which is at rest.
- Conservation of momentum
- Conservation of Energy
- Square the conservation of momentum equation
compare the above conservation of momentum equation with the conservation of energy equation
and you conclude that