Difference between revisions of "Forest UCM Energy TimeDepPE"
Jump to navigation
Jump to search
Line 15: | Line 15: | ||
:<math>d T = \frac{dT}{dt} dt = (m \vec \dot v \cdot v) dt = \vec F \cdot d \vec r</math> | :<math>d T = \frac{dT}{dt} dt = (m \vec \dot v \cdot v) dt = \vec F \cdot d \vec r</math> | ||
− | + | If a potential U for the force exists such that | |
− | :<math> | + | :<math>\vec F = - \vec \nabla U(r,t) \cdt d \vec r</math> |
or | or | ||
− | :<math>dU(r,t) = \frac{\partial}{\partial x} dx +\frac{\partial}{\partial y} dy +\frac{\partial}{\partial z} dz +\frac{\partial}{\partial t} dt </math> | + | :<math>dU(r,t) = \frac{\partial U}{\partial x} dx +\frac{\partial U}{\partial y} dy +\frac{\partial U}{\partial z} dz +\frac{\partial U}{\partial t} dt </math> |
− | :<math>= - \vec F \cdot d \vec r + \frac{\partial}{\partial t} dt </math> | + | :<math>= - \vec F \cdot d \vec r + \frac{\partial U}{\partial t} dt </math> |
− | :<math>= - dT + \frac{\partial}{\partial t} dt </math> | + | :<math>= - dT + \frac{\partial U}{\partial t} dt </math> |
or | or | ||
− | :<math>dT + dU = \frac{\partial}{\partial t} dt </math> | + | :<math>dT + dU = \frac{\partial U}{\partial t} dt </math> |
Revision as of 15:42, 24 September 2014
Time dependent force.
What happens if you have a time dependent force that still manages to satisfy
- ?
Because of the above, and Stoke's Theorem , you would be able to find a close loop where zero work is done at some given time.
If we consider the work energy theorem
or
If a potential U for the force exists such that
or
or