Difference between revisions of "Forest UCM Energy KEnWork"
Jump to navigation
Jump to search
Line 15: | Line 15: | ||
: <math>\frac{dT}{dt} = \frac{m}{2} \frac{d}{dt}v^2= \frac{m}{2} \frac{d}{dt}\vec v \cdot \vec v</math> | : <math>\frac{dT}{dt} = \frac{m}{2} \frac{d}{dt}v^2= \frac{m}{2} \frac{d}{dt}\vec v \cdot \vec v</math> | ||
::<math>= \frac{m}{2} \left (\vec \dot v \cdot \vec v + \vec v \cdot \vec \dot v \right )</math> | ::<math>= \frac{m}{2} \left (\vec \dot v \cdot \vec v + \vec v \cdot \vec \dot v \right )</math> | ||
+ | ::<math>= \frac{m}{2} 2 \vec \dot v \cdot \vec v = \vec F \cdot \vec v</math> | ||
+ | |||
+ | or | ||
+ | |||
+ | : <math>dT = \vec F \cdot \vec v dt</math> | ||
+ | |||
[[Forest_UCM_Energy#KE_.26_Work]] | [[Forest_UCM_Energy#KE_.26_Work]] |
Revision as of 12:49, 15 September 2014
Definition of KE
For a single particle of mass m moving with a velocity v, the kinetic energy is defined as
Work Energy Theorem
Derivation
Consider the Kinetic Energy's temporal rate of change assuming that the mass of the particle is constant
or