Difference between revisions of "Forest UCM MnAM ElasticCol"
Jump to navigation
Jump to search
Line 14: | Line 14: | ||
;Conservation of momentum | ;Conservation of momentum | ||
− | :<math>m_1 \vec{v}_1 + m_2 \vec{v}_2= m_1 \vec{v}_1^{\prime} +m_2 \vec{v}_2^{;;\prime}</math> | + | :<math>m_1 \vec{v}_1 + m_2 \vec{v}_2= m_1 \vec{v}_1^{\prime} +m_2 \vec{v}_2^{\;\;\prime}</math> |
− | :<math>m_1 \vec{v}_1 = m_1 \vec{v}_1^{;\prime} +m_2 \vec{v}_2^{\prime}</math>: ball 2 has zero velocity | + | :<math>m_1 \vec{v}_1 = m_1 \vec{v}_1^{\;\prime} +m_2 \vec{v}_2^{\prime}</math>: ball 2 has zero velocity |
− | :<math>\vec{v}_1 = \vec{v}_1^{;;;\prime} + \vec{v}_2^{\prime}</math>: balls have equal masses | + | :<math>\vec{v}_1 = \vec{v}_1^{\;\;\;\prime} + \vec{v}_2^{\prime}</math>: balls have equal masses |
Revision as of 12:15, 12 September 2014
An Elastic collision conserves both Momentum and Energy
- AND
Example: problem 3.5
Consider an elastic collision of two equal balls of mass
where one ball has an initial velocity and the remaining ball has zero initial velocity.Determine the angle between the two balls after the collision.
- Conservation of momentum
- : ball 2 has zero velocity
- : balls have equal masses
- Conservation of energy
- m_1 v_1^2 + m_2 v_2^2 = m_1 \left(v_1^{\prime}\right)^2 + m_2\left(v_2^{\prime}\right)^2
- v_1^2 = \left(v_1^{\prime}\right)^2 + \left(v_2^{\prime}\right)^2