Difference between revisions of "Forest UCM PnCP ProjMotion"
Line 100: | Line 100: | ||
:<math>\frac{1}{1+x} = f(x=0) + \left . \frac{d f(x)}{dx} \right |_{x=0} \frac{x-0}{1!} + \left . \frac{d^2 f(x)}{dx^2} \right |_{x=0} \frac{(x-0)^2}{2!} + \cdots = \sum_{n=0}^\infty \left . \frac{d^n f(x)}{dx^n} \right |_{x=0} \frac{(x-0)^n}{n!}</math> | :<math>\frac{1}{1+x} = f(x=0) + \left . \frac{d f(x)}{dx} \right |_{x=0} \frac{x-0}{1!} + \left . \frac{d^2 f(x)}{dx^2} \right |_{x=0} \frac{(x-0)^2}{2!} + \cdots = \sum_{n=0}^\infty \left . \frac{d^n f(x)}{dx^n} \right |_{x=0} \frac{(x-0)^n}{n!}</math> | ||
− | ::<math>=1 | + | ::<math>=1 - \left . (1+x)^{-2} \right |_{x=0} \frac{(x-0)^1}{1!} + 2 \left . (1+x)^{-3} \right |_{x=0} \frac{(x-0)^2}{2!} + \cdots</math> |
::<math> = 1 -x + 2\frac{(x)^2}{2!} - 2*3 \frac{(x)^3}{3!} + \cdots </math> | ::<math> = 1 -x + 2\frac{(x)^2}{2!} - 2*3 \frac{(x)^3}{3!} + \cdots </math> | ||
::<math> = 1 -x + x^2 - x^3 + \cdots = \sum_{n=0}^{\infty} (-x)^{n-1}</math> | ::<math> = 1 -x + x^2 - x^3 + \cdots = \sum_{n=0}^{\infty} (-x)^{n-1}</math> | ||
Line 113: | Line 113: | ||
:<math>\int \frac{1}{1-x} dx = -\int \frac{1}{u} du \;\;\;\; u = 1-x \;\;\;\; du = -dx</math> | :<math>\int \frac{1}{1-x} dx = -\int \frac{1}{u} du \;\;\;\; u = 1-x \;\;\;\; du = -dx</math> | ||
:<math>\int \frac{1}{1-x} dx = -\ln(u) = -\ln(1-x)</math> | :<math>\int \frac{1}{1-x} dx = -\ln(u) = -\ln(1-x)</math> | ||
+ | |||
+ | Taylor expanding about x=0 | ||
+ | |||
+ | :<math>\frac{1}{1-x} = f(x=0) + \left . \frac{d f(x)}{dx} \right |_{x=0} \frac{x-0}{1!} + \left . \frac{d^2 f(x)}{dx^2} \right |_{x=0} | ||
+ | ::<math>=1 + \left . (1-x)^{-2} \right |_{x=0} \frac{(x-0)^1}{1!} + 2 \left . (1+x)^{-3} \right |_{x=0} \frac{(x-0)^2}{2!} + \cdots</math> | ||
+ | ::<math> = 1 + x + 2\frac{(x)^2}{2!} + 2*3 \frac{(x)^3}{3!} + \cdots </math> | ||
+ | ::<math> = 1 +x + x^2 +x^3 + \cdots = \sum_{n=0}^{\infty} (x)^{n-1}</math> | ||
+ | |||
[[Forest_UCM_PnCP#Projecile_Motion]] | [[Forest_UCM_PnCP#Projecile_Motion]] |
Revision as of 14:37, 1 September 2014
Projectile Motion
Friction depends linearly on velocity
Projectile motion describes the path a mass moving in two dimensions. An example of which is the motion of a projectile shot out of a cannon with an initial velocity
with an angle of inclination .When the motion in each dimension is independent, the kinematics are separable giving you two equations of motion that depend on the same time.
Using our solutions for the horizontal and vertical motion when friction depends linearly on velocity (Forest_UCM_PnCP_LinAirRes) we can write :
where
has replced so the components are more explicitly identifiable.in the y-direction however, the directions are changed to represent an object moving upwards instead of falling
Newton's second law for falling
becomes
for a rising projectile
This changes the signs in front of the
terms such thatbecomes
where
has replced so the components are more explicitly identifiable.
We now have a system governed by the following system of two equations
let
Range equation
To determine how far the projectile will travel in the x-direction (Range) you can solve the above equation for
in the case that .since time is the same in both equations you can solve for time in terms of x and substitute for time inthe y-direction equations.
solving for
using the x-direction equationsubstituting for
now we need to substitute for time
substituting for time
The Range is defined as the value for when
The above equation does not have an exact analytical solution.
You can try to solve it graphically or by taylor expanding small quantities when they appear as arguments to functions like the
functionSolution by Taylor expansion
If
ln(1-x) Taylor expansion
Taylor expanding about x = 0 for
similarly
Taylor expanding about x=0