Difference between revisions of "Forest UCM PnCP LinAirRes"
Jump to navigation
Jump to search
Line 45: | Line 45: | ||
:<math> \frac{dy}{dt} = v_0e^{-bt} + v_t \left (1 -e^{-bt}\right )</math> | :<math> \frac{dy}{dt} = v_0e^{-bt} + v_t \left (1 -e^{-bt}\right )</math> | ||
:<math> \int_0^y = \int_0^t \left ( v_0e^{-bt} + v_t \left (1 -e^{-bt}\right ) \right ) dt</math> | :<math> \int_0^y = \int_0^t \left ( v_0e^{-bt} + v_t \left (1 -e^{-bt}\right ) \right ) dt</math> | ||
+ | :<math>y = \int_0^t v_0e^{-bt}dt + \int_0^t v_t \left (1 -e^{-bt}\right ) dt</math> | ||
[[Forest_UCM_PnCP#Linear_Air_Resistance]] | [[Forest_UCM_PnCP#Linear_Air_Resistance]] |
Revision as of 11:59, 1 September 2014
Linear Air Resistance
Horizontal motion
If
is unity then the velocity is exponentially approaching zero.- : negative sign indicates a retarding force and is a proportionality constant
- ;
The displacement is given by
Example: falling object with linear air friction
Consider a ball falling under the influence of gravity and a frictional force that is proportion to its velocity
let
- coefficient of air resistance
- Terminal speed
The posiiton as a function of time may be determined by directly integrating the above equation