Difference between revisions of "Forest UCM PnCP ProjMotion"

From New IAC Wiki
Jump to navigation Jump to search
Line 11: Line 11:
  
  
Using our solutions for the horizontal [[Forest_UCM_PnCP_LinAirRes]] and vertical motion when friction depends linearly on velocity we can write :
+
Using our solutions for the horizontal and vertical motion when friction depends linearly on velocity ([[Forest_UCM_PnCP_LinAirRes]]) we can write :
  
 +
 +
 +
::<math>= v_t t + \frac{1}{b}\left ( v_0 - v_t) \right ) \left ( 1- e^{-bt}  \right )  dt</math>
 +
:<math>\sum \vec{F}_{ext} = mg -bv = m \frac{dv}{dt}</math>
  
  
  
 
[[Forest_UCM_PnCP#Projecile_Motion]]
 
[[Forest_UCM_PnCP#Projecile_Motion]]

Revision as of 12:12, 1 September 2014

Projectile Motion

Friction depends lienarly on velocity

Projectile motion describes the path a mass moving in two dimensions. An example of which is the motion of a projectile shot out of a cannon with an initial velocity [math]v_0[/math] with an angle of inclination [math]\theta[/math].

When the motion in each dimension is independent, the kinematics are separable giving you two equations of motion that depend on the same time.


Using our solutions for the horizontal and vertical motion when friction depends linearly on velocity (Forest_UCM_PnCP_LinAirRes) we can write :


[math]= v_t t + \frac{1}{b}\left ( v_0 - v_t) \right ) \left ( 1- e^{-bt} \right ) dt[/math]
[math]\sum \vec{F}_{ext} = mg -bv = m \frac{dv}{dt}[/math]


Forest_UCM_PnCP#Projecile_Motion