Difference between revisions of "Forest UCM PnCP LinAirRes"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
− | + | Linear Air Resistance= | |
+ | |||
+ | =Horizontal motion = | ||
If <math>n</math> is unity then the velocity is exponentially approaching zero. | If <math>n</math> is unity then the velocity is exponentially approaching zero. | ||
Line 18: | Line 20: | ||
:: <math>= v_i \left ( \frac{m}{b} e^{-\frac{b}{m}0} -\frac{m}{b} e^{-\frac{b}{m}t} \right ) </math> | :: <math>= v_i \left ( \frac{m}{b} e^{-\frac{b}{m}0} -\frac{m}{b} e^{-\frac{b}{m}t} \right ) </math> | ||
:: <math>= \frac{m}{b} v_i \left ( 1-e^{-\frac{b}{m}t} \right )</math> | :: <math>= \frac{m}{b} v_i \left ( 1-e^{-\frac{b}{m}t} \right )</math> | ||
+ | |||
+ | |||
+ | =Example: falling object with linear air friction= | ||
+ | Consider a ball falling under the influence of gravity and a frictional force that is proportion to its velocity | ||
+ | |||
+ | :<math>\sum \vec{F}_{ext} = mg -bv = m \frac{dv}{dt}</math> | ||
+ | |||
+ | let | ||
+ | :<math>v_t = \frac{mg}{b}</math> | ||
+ | :<math> v_t -v = \frac{1}{b} \frac{dv}{dt}</math> | ||
+ | :<math> b dt= \frac{dv}{v_t -v} </math> | ||
+ | :<math> -b dt= \frac{dv}{v -v_t} </math> | ||
+ | :<math> -\int_0^t b dt= \int_{v_0}^v \frac{dv}{v -v_t} </math> | ||
+ | :<math> -bt = \ln{\left( v -v_t \right)} - \ln{\left ( v_0-v_t \right )}</math> | ||
+ | :<math> -bt = \ln \left(\frac{ v -v_t }{v_0-v_t}\right )</math> | ||
+ | :<math> e^{-bt} = \left(\frac{ v -v_t }{v_0-v_t}\right )</math> | ||
+ | :<math> v -v_t = \left ( v_0-v_t\right )e^{-bt}</math> | ||
+ | :<math> v = v_0e^{-bt} + v_t \left (1 -e^{-bt}\right )</math> | ||
[[Forest_UCM_PnCP#Linear_Air_Resistance]] | [[Forest_UCM_PnCP#Linear_Air_Resistance]] |
Revision as of 13:54, 31 August 2014
Linear Air Resistance=
Horizontal motion
If
is unity then the velocity is exponentially approaching zero.- : negative sign indicates a retarding force and is a proportionality constant
- ;
The displacement is given by
Example: falling object with linear air friction
Consider a ball falling under the influence of gravity and a frictional force that is proportion to its velocity
let