Difference between revisions of "Forest UCM NLM Oscilations"
Jump to navigation
Jump to search
Line 28: | Line 28: | ||
: <math>\sum \vec{F}_{ext} = \vec{F}_g + \vec{N} = m \left ( \ddot{r} -r\dot{\phi}^2 \right) \hat{r} + \left ( 2\dot{r} \dot{\phi} +r \ddot{\phi} \right ) \hat{\phi}</math> | : <math>\sum \vec{F}_{ext} = \vec{F}_g + \vec{N} = m \left ( \ddot{r} -r\dot{\phi}^2 \right) \hat{r} + \left ( 2\dot{r} \dot{\phi} +r \ddot{\phi} \right ) \hat{\phi}</math> | ||
− | For the case of circular motion at constant <math> r | + | For the case of circular motion at constant <math> r=R, \dot{r} = 0</math> |
− | :<math>\vec{F}_g + \vec{N} = m \left ( - | + | :<math>\vec{F}_g + \vec{N} = m \left ( -R\dot{\phi}^2 \hat{r} + R \ddot{\phi} \hat{\phi} \right ) </math> |
+ | |||
+ | === The r-hat direction== | ||
+ | |||
+ | : mg \cos \theta - N = -m R\dot{\phi}^2 | ||
[[Forest_UCM_NLM#Oscillatiions]] | [[Forest_UCM_NLM#Oscillatiions]] |
Revision as of 12:11, 31 August 2014
Skate boarder in Half pipe
Consider a frictionless skateboard released from the top of a semi-circle (half pipe) and oriented to fall directly towards the bottom. The semi-circle has a radius
and the skateboard has a mass .Note: because the skateboard is frictionless, its wheels are not going to turn.
Step 1: System
The skateboard of mass
is the system.Step 1: Coordinate system
Polar coordinate may be a good coordinate system to use since the skateboard's motion will be along the half circle.
Step 3: Free Body Diagram
Step 4: External Force vectors
Step 5: apply Netwon's 2nd Law
For the case of circular motion at constant
= The r-hat direction
- mg \cos \theta - N = -m R\dot{\phi}^2