Difference between revisions of "Forest UCM PnCP"
Jump to navigation
Jump to search
Line 18: | Line 18: | ||
− | :<math>\vec{F} = m \vec{a} = q \vec{v} \times \vec{B} = \left ( \begin{matrix} \hat i & \hat j & \hat k \\ v_x & v_y &0 \\ 0 &0 & B \end{matrix} \right )</math> | + | :<math>\vec{F} = m \vec{a} = q \vec{v} \times \vec{B} = q\left ( \begin{matrix} \hat i & \hat j & \hat k \\ v_x & v_y &0 \\ 0 &0 & B \end{matrix} \right )</math> |
− | + | :\vec{F} = q \left (v_x B \hat i + v_y B \hat j \right ) | |
[[Forest_Ugrad_ClassicalMechanics]] | [[Forest_Ugrad_ClassicalMechanics]] |
Revision as of 12:10, 25 August 2014
Charged Particle in uniform B-Field
Consider a charged particle moving the x-y plane in the presence of a uniform magnetic field with field lines in the z-dierection.
- Lorentz Force
- Note
- the work done by a magnetic field is zero if the particle's kinetic energy (mass and velocity) don't change.
No work is done on a charged particle force to move in a fixed circular orbit by a magnetic field (cyclotron)
- \vec{F} = q \left (v_x B \hat i + v_y B \hat j \right )