Difference between revisions of "Forest UCM NLM AtwoodMachine"

From New IAC Wiki
Jump to navigation Jump to search
Line 30: Line 30:
 
== Step 4: Define the Force vectors using the above coordinate system==
 
== Step 4: Define the Force vectors using the above coordinate system==
  
 +
;for mass 1
 +
:<math>T_1 - m_1 g = m_1 a_1</math>
  
 +
;for mass 2
 +
:<math>T_2 - m_2 g = m_2 a_2</math>
 +
 +
;for mass 3
 +
:<math>T_3 - m_3 g = m_3 a_3</math>
  
 
==Step 5: Use Newton's second law==
 
==Step 5: Use Newton's second law==

Revision as of 11:31, 22 August 2014

Simple Atwood's machine

TF UCM SAM 1.gif


[math]\Rightarrow T = \frac{2m_1m_2}{m_1+m_2} g[/math]

Double Atwood's machine

TF UCM DAM 1.gif


The problem

Determine the acceleration of each mass in the above picture.

Step 1: Identify the system

Each block is a separate system with two external forces; a gravitational force and the rope tension.

Step 2: Choose a suitable coordinate system

A coordinate system with one axis that defines the posive direction as up is one possible orientation.

Step 3: Draw the Free Body Diagram

200 px

Step 4: Define the Force vectors using the above coordinate system

for mass 1
[math]T_1 - m_1 g = m_1 a_1[/math]
for mass 2
[math]T_2 - m_2 g = m_2 a_2[/math]
for mass 3
[math]T_3 - m_3 g = m_3 a_3[/math]

Step 5: Use Newton's second law

Forest_UCM_NLM#Atwoods_Machine