Difference between revisions of "Forest UCM NLM GalileanTans"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
[[File:TF_UCM_GalileanTans_RefFrame.png | 200 px]]
 
[[File:TF_UCM_GalileanTans_RefFrame.png | 200 px]]
  
Assume that <math>S^{\prime}</math> is a coordinate system moving at a CONSTANT speed <math>v</math>.
+
Assume that <math>S^{\prime}</math> is a coordinate system moving at a CONSTANT speed <math>v</math> with respect to a fixed coordinate system <math>S</math>.
  
  
Line 21: Line 21:
 
:<math>\vec{a} = \frac{d^2 \vec{r}}{dt^2} =  \frac{d^2 \vec{R}}{dt^2}  +  \frac{d^2 \vec{r}^{\prime}}{dt^2} </math>
 
:<math>\vec{a} = \frac{d^2 \vec{r}}{dt^2} =  \frac{d^2 \vec{R}}{dt^2}  +  \frac{d^2 \vec{r}^{\prime}}{dt^2} </math>
  
 +
 +
Newton's law of motion may be written as
 +
 +
:\vec{F} = m\vec{a} = m \left ( \frac{d^2 \vec{R}}{dt^2}  +  \frac{d^2 \vec{r}^{\prime}}{dt^2}  \right )
  
 
[[Forest_UCM_NLM#Galilean_Transformations]]
 
[[Forest_UCM_NLM#Galilean_Transformations]]

Revision as of 12:34, 20 August 2014

TF UCM GalileanTans RefFrame.png

Assume that [math]S^{\prime}[/math] is a coordinate system moving at a CONSTANT speed [math]v[/math] with respect to a fixed coordinate system [math]S[/math].


Let [math]\vec{r}[/math] and [math]\vec{r}^{\prime}[/math] describe the position an object in motion using two different coordinate systems [math]S[/math] and [math]S^{\prime}[/math] respectively.


[math]\vec{R}[/math] represents a vector that locates the origin of the moving reference frame ([math]S^{\prime}[/math]) with respect to the origin of reference from [math]S[/math].

Using the definition of vector addition

[math]\vec{r} = \vec{R} + \vec{r}^{\prime}[/math]

Similarly

[math]\vec{v} = \frac{d \vec{r}}{dt} = \frac{d \vec{R}}{dt} + \frac{d \vec{r}^{\prime}}{dt} [/math]

and

[math]\vec{a} = \frac{d^2 \vec{r}}{dt^2} = \frac{d^2 \vec{R}}{dt^2} + \frac{d^2 \vec{r}^{\prime}}{dt^2} [/math]


Newton's law of motion may be written as

\vec{F} = m\vec{a} = m \left ( \frac{d^2 \vec{R}}{dt^2} + \frac{d^2 \vec{r}^{\prime}}{dt^2} \right )

Forest_UCM_NLM#Galilean_Transformations