Difference between revisions of "Extracting DeltaDoverD from PionAsym"
Line 1: | Line 1: | ||
− | |||
{| border="0" style="background:transparent;" align="center" | {| border="0" style="background:transparent;" align="center" | ||
Line 5: | Line 4: | ||
|<math>\frac{\Delta d_v}{d_v} = \frac{\Delta \sigma_p^{\pi^+ - \pi^-} - 4\Delta \sigma_{2H}^{\pi^+ - \pi^-}}{\sigma_p^{\pi^+ - \pi^-} - 4\sigma_{2H}^{\pi^+ - \pi^-}} </math> | |<math>\frac{\Delta d_v}{d_v} = \frac{\Delta \sigma_p^{\pi^+ - \pi^-} - 4\Delta \sigma_{2H}^{\pi^+ - \pi^-}}{\sigma_p^{\pi^+ - \pi^-} - 4\sigma_{2H}^{\pi^+ - \pi^-}} </math> | ||
|} | |} | ||
+ | |||
+ | The semi inclusive pion electro-production cross section using proton or deuteron targets can be written, according to , as: | ||
+ | |||
+ | |||
+ | {| border="0" style="background:transparent;" align="center" | ||
+ | |- | ||
+ | |<math>\Delta \sigma_p^{\pi^+ \pm \pi^-} = \frac{1}{9}[4(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}</math> | ||
+ | |}<br> | ||
+ | {| border="0" style="background:transparent;" align="center" | ||
+ | |- | ||
+ | |<math>\Delta \sigma_n^{\pi^+ \pm \pi^-} = \frac{1}{9}[4(\Delta d + \Delta d^-) \pm (\Delta u + \Delta u^-)]D_u^{\pi^+ \pm \pi^-}</math> | ||
+ | |}<br> | ||
+ | {| border="0" style="background:transparent;" align="center" | ||
+ | |- | ||
+ | |<math>\Delta \sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[(\Delta u + \Delta \bar{u}) \pm (\Delta d + \Delta \bar{d})]D_u^{\pi^+ \pm \pi^-}</math> | ||
+ | |}<br> | ||
+ | and unpolarized:<br> | ||
+ | {| border="0" style="background:transparent;" align="center" | ||
+ | |- | ||
+ | |<math>\sigma_p^{\pi^+ \pm \pi^-} = \frac{1}{9}[4( u + \bar{u}) \pm ( d + \bar{d})]D_u^{\pi^+ \pm \pi^-}</math> | ||
+ | |}<br> | ||
+ | {| border="0" style="background:transparent;" align="center" | ||
+ | |- | ||
+ | |<math>\sigma_n^{\pi^+ \pm \pi^-} = \frac{1}{9}[4(d + \bar{d}) \pm (u + \bar{u})]D_u^{\pi^+ \pm \pi^-}</math> | ||
+ | |}<br> | ||
+ | {| border="0" style="background:transparent;" align="center" | ||
+ | |- | ||
+ | |<math>\sigma_{2H}^{\pi^+ \pm \pi^-} = \frac{5}{9}[( u + \bar{u}) \pm ( d + \bar{d})]D_u^{\pi^+ \pm \pi^-}</math> | ||
+ | |}<br> | ||
+ | |||
The asymmetries from semi inclusive pion electroproduction using proton or deuteron targets can be written in terms of the difference of the yield from oppositely charged pions <ref name="Christova"> Christova, E., & Leader, E. (1999). Semi-inclusive production-tests for independent fragmentation and for polarized quark densities. hep-ph/9907265.</ref>:<br> | The asymmetries from semi inclusive pion electroproduction using proton or deuteron targets can be written in terms of the difference of the yield from oppositely charged pions <ref name="Christova"> Christova, E., & Leader, E. (1999). Semi-inclusive production-tests for independent fragmentation and for polarized quark densities. hep-ph/9907265.</ref>:<br> | ||
+ | |||
+ | |||
+ | |||
{| border="0" style="background:transparent;" align="center" | {| border="0" style="background:transparent;" align="center" | ||
|- | |- | ||
Line 66: | Line 98: | ||
|}<br> | |}<br> | ||
The ratio of polarized to unpolarized valence quark distribution functions can be extracted using the last two equations.<br> | The ratio of polarized to unpolarized valence quark distribution functions can be extracted using the last two equations.<br> | ||
+ | |||
+ | |||
+ | Christova_Leader_ hep-ph-9907265.pdf |
Revision as of 17:18, 12 November 2012
The semi inclusive pion electro-production cross section using proton or deuteron targets can be written, according to , as:
and unpolarized:
The asymmetries from semi inclusive pion electroproduction using proton or deuteron targets can be written in terms of the difference of the yield from oppositely charged pions <ref name="Christova"> Christova, E., & Leader, E. (1999). Semi-inclusive production-tests for independent fragmentation and for polarized quark densities. hep-ph/9907265.</ref>:
Independent fragmentation identifies the process in which quarks fragment into hadrons, independent of the photon-quark scattering process. In other words, the fragmentation process is independent of the initial quark environment, which initiates the hadronization process. Assuming independent fragmentation and using isospin (
The polarized and unpolarized cross sections for pion electroproduction can be written in terms of valence quark distribution functions in the valence region as:
and unpolarized:
In the valence region (
The ratio of polarized to unpolarized valence up and down quark distributions may then be written as
and
The ratio of polarized to unpolarized valence quark distribution functions can be extracted using the last two equations.
Christova_Leader_ hep-ph-9907265.pdf