Difference between revisions of "Extracting DeltaDoverD from PionAsym"

From New IAC Wiki
Jump to navigation Jump to search
(Created page with "==Fragmentation Independence== The asymmetries from semi inclusive pion electroproduction using proton or deuteron targets can be written in terms of the difference of the yield …")
 
Line 1: Line 1:
 
==Fragmentation Independence==
 
==Fragmentation Independence==
 +
 +
{| border="0" style="background:transparent;"  align="center"
 +
|-
 +
|<math>\frac{\Delta d_v}{d_v}(x,Q^2) = \frac{\Delta \sigma_p^{\pi^+ - \pi^-} - 4\Delta \sigma_{2H}^{\pi^+ - \pi^-}}{\sigma_p^{\pi^+ - \pi^-} - 4\sigma_{2H}^{\pi^+ - \pi^-}} (x,Q^2)</math>
 +
|}<br>
 +
 
The asymmetries from semi inclusive pion electroproduction using proton or deuteron targets can be written in terms of the difference of the yield from oppositely charged pions <ref name="Christova"> Christova, E., & Leader, E. (1999). Semi-inclusive production-tests for independent fragmentation and for polarized quark densities. hep-ph/9907265.</ref>:<br>
 
The asymmetries from semi inclusive pion electroproduction using proton or deuteron targets can be written in terms of the difference of the yield from oppositely charged pions <ref name="Christova"> Christova, E., & Leader, E. (1999). Semi-inclusive production-tests for independent fragmentation and for polarized quark densities. hep-ph/9907265.</ref>:<br>
 
{| border="0" style="background:transparent;"  align="center"
 
{| border="0" style="background:transparent;"  align="center"

Revision as of 23:58, 7 November 2012

Fragmentation Independence

Δdvdv(x,Q2)=Δσπ+πp4Δσπ+π2Hσπ+πp4σπ+π2H(x,Q2)


The asymmetries from semi inclusive pion electroproduction using proton or deuteron targets can be written in terms of the difference of the yield from oppositely charged pions <ref name="Christova"> Christova, E., & Leader, E. (1999). Semi-inclusive production-tests for independent fragmentation and for polarized quark densities. hep-ph/9907265.</ref>:

Aπ+±π1,p=Δσπ+±πpσπ+±πp=[(σpπ+)1/2(σpπ+)3/2]±[(σpπ)1/2(σpπ)3/2][(σpπ+)1/2+(σpπ+)3/2]±[(σpπ)1/2+(σpπ)3/2]


Aπ+±π1,2H=Δσπ+±π2Hσπ+±π2H=[(σ2Hπ+)1/2(σ2Hπ+)3/2]±[(σ2Hπ)1/2(σ2Hπ)3/2][(σ2Hπ+)1/2+(σ2Hπ+)3/2]±[(σ2Hπ)1/2+(σ2Hπ)3/2]


Independent fragmentation identifies the process in which quarks fragment into hadrons, independent of the photon-quark scattering process. In other words, the fragmentation process is independent of the initial quark environment, which initiates the hadronization process. Assuming independent fragmentation and using isospin (Dπ+u=Dπ¯u and Dπd=Dπ+¯d ) and charge (Dπ+u=Dπd) conjugation invariance for the fragmentation functions, the following equality holds:

Dπ+±πu=Dπ+u±Dπu=Dπ+±πd


The polarized and unpolarized cross sections for pion electroproduction can be written in terms of valence quark distribution functions in the valence region as:

Δσπ+±πp=19[4(Δu+Δˉu)±(Δd+Δˉd)]Dπ+±πu


Δσπ+±πn=19[4(Δd+Δd)±(Δu+Δu)]Dπ+±πu


Δσπ+±π2H=59[(Δu+Δˉu)±(Δd+Δˉd)]Dπ+±πu


and unpolarized:

σπ+±πp=19[4(u+ˉu)±(d+ˉd)]Dπ+±πu


σπ+±πn=19[4(d+ˉd)±(u+ˉu)]Dπ+±πu


σπ+±π2H=59[(u+ˉu)±(d+ˉd)]Dπ+±πu


In the valence region (xB>0.3), where the sea quark contribution is minimized, the above asymmetries can be expressed in terms of polarized and unpolarized valence quark distributions:

Aπ+±π1,p=4Δuv(x)±Δdv(x)4uv(x)±dv(x)


Aπ+±π1,2H=Δuv(x)+Δdv(x)uv(x)+dv(x)


The ratio of polarized to unpolarized valence up and down quark distributions may then be written as

Δuvuv(x,Q2)=Δσπ+πp+Δσπ+π2Hσπ+πp+σπ+π2H(x,Q2)


and

Δdvdv(x,Q2)=Δσπ+πp4Δσπ+π2Hσπ+πp4σπ+π2H(x,Q2)


The ratio of polarized to unpolarized valence quark distribution functions can be extracted using the last two equations.