Difference between revisions of "HRRL Pos Test 27Jul2012 Data Ana 3 MeV"
Jump to navigation
Jump to search
(Blanked the page) |
|||
Line 1: | Line 1: | ||
+ | = 3 MeV = | ||
+ | == 2 ways to calculate electron charge == | ||
+ | |||
+ | NE(Int_t ri, Int_t Reprate, Int_t calc_meth){ | ||
+ | printf("%d %d \n",ri, Reprate); | ||
+ | if(ri==1) TFile *f = new TFile("C:/Users/sadiq/Documents/phd/Runs_Jul_2012/rootfiles/7-27-12/r3735.root"); | ||
+ | else if(ri==2) TFile *f = new TFile("C:/Users/sadiq/Documents/phd/Runs_Jul_2012/rootfiles/7-27-12/r3737.root"); | ||
+ | TTree *ntuple = (TTree*)f->Get("ntuple"); | ||
+ | TH1F *f9=new TH1F("f9","ADC9",4000,0,4000); | ||
+ | TCanvas * c2 = new TCanvas("c2", "c2",600 ,500); | ||
+ | c2->cd(); | ||
+ | Long64_t ne; | ||
+ | printf("%d \n", ne); | ||
+ | //method 1 is reprate times single pulse charge | ||
+ | === method 1=== | ||
+ | |||
+ | Double_t Qp1=0,Qp2=0; | ||
+ | if(calc_meth == 1){ | ||
+ | //ntuple->Draw("ADC9*(1.22*1e-9)/50>>f9","1"); | ||
+ | ntuple->Draw("ADC9>>f9"); | ||
+ | //Qp2 = (f9->Integral())*(1.22*1e-9)/50; //charge calculate with method 2. | ||
+ | //f9->Fit("gaus"); | ||
+ | ADC9_fit_mean = f9->GetMean(1); | ||
+ | //ADC9_fit_mean = ADC9->GetMean(1); | ||
+ | printf("ADC9_fit_mean = %d \n",ADC9_fit_mean); | ||
+ | Qp1 = ADC9_fit_mean*(1.22*1e-9)/50; //Qp: charge per pulse. The calibration: 1.22 (9nV s)/(ADC channel), 50 ohm Terminal. | ||
+ | printf("QP1=%g\n\n",Qp1); | ||
+ | printf("e- charge per pulse with method 1: %g\n",Qp1); | ||
+ | //printf("Reprate: %d\n",Reprate); | ||
+ | Qs=Reprate*Qp1; //Qs: Charge per second. | ||
+ | //printf("e- charge per second: %g\n",Qs); | ||
+ | ne=Qs/Q_e; //Ne: number of electrons per second. | ||
+ | } | ||
+ | |||
+ | |||
+ | === method 2=== | ||
+ | |||
+ | if(calc_meth == 2){ | ||
+ | //ntuple->Draw("ADC9*(1.22*1e-9)/50>>f9","1"); | ||
+ | ntuple->Draw("ADC9>>f9"); | ||
+ | printf("%bin# Bin Content%d\n"); | ||
+ | for(i=1; i<=4000; i++){ | ||
+ | //for(i=0; i<=600; i++){ | ||
+ | bin_content[i] = f9->GetBinContent(i); | ||
+ | //Qp2+=(i*(1.22*1e-9)/50)*bin_content[i]; | ||
+ | Qp2+=i*bin_content[i]*(1.22*1e-9)/50; | ||
+ | //printf("%d %d %g \n",i,bin_content[i],Qp2); | ||
+ | } | ||
+ | |||
+ | //printf("Integral = %d \n",f9->Integral()); | ||
+ | //Qp2 = (f9->Integral())*(1.22*1e-9)/50; //charge calculate with method 2. | ||
+ | printf("QP2=%g\n\n",Qp2); | ||
+ | printf("total e- charge in this run with method 2: %g\n",Qp2); | ||
+ | //printf("Reprate: %d\n",Reprate); | ||
+ | Qs=Qp2; //Qs: Charge per second. | ||
+ | printf("e- charge per second: %g\n",Qs); | ||
+ | printf("e- charge: %g\n",Q_e); | ||
+ | ne=Qs/Q_e; //Ne: number of electrons per second. | ||
+ | printf("1. total number of electrons in this run: %g\n",ne); | ||
+ | } | ||
+ | printf("2. total number of electrons in this run: %g\n",ne); | ||
+ | c2->Close(); | ||
+ | f->Close(); | ||
+ | return(ne); | ||
+ | } | ||
+ | |||
+ | == results in 3 MeV == | ||
+ | |||
+ | === results on 3 MeV === | ||
+ | |||
+ | {| border="1" | ||
+ | |- | ||
+ | |run in||run out || NaI Left: in sub out || NaI Right: in sub out|| NaI Left: overlap in and out || NaI Right: overlap in and out ||e- rate (Hz)||e+ rate (Hz)||e+/e+ ratop || e- current (A) | ||
+ | |- | ||
+ | |||
+ | |3735||3736 | ||
+ | |||
+ | ||[[File:hrrl_pos_27jul2012_data_ana_with_Cuts_r3735_sub_r3736_DL_1.png|100 px]] | ||
+ | ||[[File:hrrl_pos_27jul2012_data_ana_with_Cuts_r3735_sub_r3736_DR_1.png|100 px]] | ||
+ | |||
+ | ||[[File:hrrl_pos_27jul2012_data_ana_with_Cuts_r3735_over_r3736_DL_1.png|100 px]] | ||
+ | ||[[File:hrrl_pos_27jul2012_data_ana_with_Cuts_r3735_over_r3736_DR_1.png|100 px]] | ||
+ | |||
+ | ||1.18636e+012||0.25656||2.16258e-013 || 1.90076e-007 | ||
+ | |||
+ | |- | ||
+ | |||
+ | |3737||3736 | ||
+ | |||
+ | ||[[File:hrrl_pos_27jul2012_data_ana_with_Cuts_r3737_sub_r3736_DL_1.png|100 px]] | ||
+ | ||[[File:hrrl_pos_27jul2012_data_ana_with_Cuts_r3737_sub_r3736_DR_1.png|100 px]] | ||
+ | |||
+ | ||[[File:hrrl_pos_27jul2012_data_ana_with_Cuts_r3737_over_r3736_DL_1.png|100 px]] | ||
+ | ||[[File:hrrl_pos_27jul2012_data_ana_with_Cuts_r3737_over_r3736_DR_1.png|100 px]] | ||
+ | |||
+ | ||1.97625e+012||0.251457||1.27239e-013 || 3.1663e-007 | ||
+ | |||
+ | |- | ||
+ | |} | ||
+ | |||
+ | === Hand calculation on electron rate === | ||
+ | |||
+ | At full current on Faraday cup 1 we have 1201 nVs/ADC channel. | ||
+ | |||
+ | <math>\frac{1201~nVs}{50 \Omega} = 24~nAs = 24~nC</math> | ||
+ | |||
+ | charge rate under 300 Reprate: <math>300 \times 24~nAs = 7200~nC = 7.2 \frac{\mu C }{ s}</math> | ||
+ | |||
+ | |||
+ | <math> \frac{7.2 \times 10^{-6}\frac{ C }{ s}} {1.6 \times 10^{-19} C} = 4.5 \times 10^{13}</math> | ||
+ | |||
+ | |||
+ | |||
+ | [[https://wiki.iac.isu.edu/index.php/Beam_Test_Jul_27_2012 go back]] |
Revision as of 08:08, 7 September 2012
3 MeV
2 ways to calculate electron charge
NE(Int_t ri, Int_t Reprate, Int_t calc_meth){ printf("%d %d \n",ri, Reprate); if(ri==1) TFile *f = new TFile("C:/Users/sadiq/Documents/phd/Runs_Jul_2012/rootfiles/7-27-12/r3735.root"); else if(ri==2) TFile *f = new TFile("C:/Users/sadiq/Documents/phd/Runs_Jul_2012/rootfiles/7-27-12/r3737.root"); TTree *ntuple = (TTree*)f->Get("ntuple"); TH1F *f9=new TH1F("f9","ADC9",4000,0,4000); TCanvas * c2 = new TCanvas("c2", "c2",600 ,500); c2->cd(); Long64_t ne; printf("%d \n", ne); //method 1 is reprate times single pulse charge
method 1
Double_t Qp1=0,Qp2=0; if(calc_meth == 1){ //ntuple->Draw("ADC9*(1.22*1e-9)/50>>f9","1"); ntuple->Draw("ADC9>>f9"); //Qp2 = (f9->Integral())*(1.22*1e-9)/50; //charge calculate with method 2. //f9->Fit("gaus"); ADC9_fit_mean = f9->GetMean(1); //ADC9_fit_mean = ADC9->GetMean(1); printf("ADC9_fit_mean = %d \n",ADC9_fit_mean); Qp1 = ADC9_fit_mean*(1.22*1e-9)/50; //Qp: charge per pulse. The calibration: 1.22 (9nV s)/(ADC channel), 50 ohm Terminal. printf("QP1=%g\n\n",Qp1); printf("e- charge per pulse with method 1: %g\n",Qp1); //printf("Reprate: %d\n",Reprate); Qs=Reprate*Qp1; //Qs: Charge per second. //printf("e- charge per second: %g\n",Qs); ne=Qs/Q_e; //Ne: number of electrons per second. }
method 2
if(calc_meth == 2){ //ntuple->Draw("ADC9*(1.22*1e-9)/50>>f9","1"); ntuple->Draw("ADC9>>f9"); printf("%bin# Bin Content%d\n"); for(i=1; i<=4000; i++){ //for(i=0; i<=600; i++){ bin_content[i] = f9->GetBinContent(i); //Qp2+=(i*(1.22*1e-9)/50)*bin_content[i]; Qp2+=i*bin_content[i]*(1.22*1e-9)/50; //printf("%d %d %g \n",i,bin_content[i],Qp2); }
//printf("Integral = %d \n",f9->Integral()); //Qp2 = (f9->Integral())*(1.22*1e-9)/50; //charge calculate with method 2. printf("QP2=%g\n\n",Qp2); printf("total e- charge in this run with method 2: %g\n",Qp2); //printf("Reprate: %d\n",Reprate); Qs=Qp2; //Qs: Charge per second. printf("e- charge per second: %g\n",Qs); printf("e- charge: %g\n",Q_e); ne=Qs/Q_e; //Ne: number of electrons per second. printf("1. total number of electrons in this run: %g\n",ne); } printf("2. total number of electrons in this run: %g\n",ne); c2->Close(); f->Close(); return(ne); }
results in 3 MeV
results on 3 MeV
Hand calculation on electron rate
At full current on Faraday cup 1 we have 1201 nVs/ADC channel.
charge rate under 300 Reprate:
[go back]