Difference between revisions of "GradFinalLab RS"

From New IAC Wiki
Jump to navigation Jump to search
Line 19: Line 19:
  
 
==Graph <math>V_{out}</math> as a function of <math>V_{in}</math>.  Is there a hysteresis loop?==
 
==Graph <math>V_{out}</math> as a function of <math>V_{in}</math>.  Is there a hysteresis loop?==
 +
 +
If the input voltage goes up my measured output voltages are:
 +
 +
[[File:Table input up.png | 400px]]
 +
 +
If the input voltage goes down my measured output voltages are:
 +
 +
[[File:Table input down.png | 400px]]
 +
 +
 +
 +
In the plot below I overplay the output voltages vs. input voltages for both cases as input voltage goes up (black line) and down (red line):
 +
 +
[[File:Plot hysteresis.png | 800px]]
  
 
==Identify the input voltage threshold levels at which a <math> V_{in}</math> will produce <math>V_{out} \approx V_{cc}</math>==
 
==Identify the input voltage threshold levels at which a <math> V_{in}</math> will produce <math>V_{out} \approx V_{cc}</math>==

Revision as of 03:33, 27 April 2011

Go Back to All Lab Reports


Construct a Schmitt Trigger using the 741 Op Amp

Draw the Schmitt Trigger circuit you constructed. Identify the values of all components

Schmitt trigger 01.png

To construct the circuit above I am going to use the following components and voltages:

  1. R1=(1.01±0.01) kΩ
  2. R2=(1.01±0.01) kΩ
  3. R3=(5.10±0.01) kΩ
  4. OP AMP 741
  5. Vref=(+11.90±0.01) V
  6. Vcc=(+11.90±0.01) V
  7. Vee=(12.11±0.01) V

Graph Vout as a function of Vin. Is there a hysteresis loop?

If the input voltage goes up my measured output voltages are:

Table input up.png

If the input voltage goes down my measured output voltages are:

Table input down.png


In the plot below I overplay the output voltages vs. input voltages for both cases as input voltage goes up (black line) and down (red line):

Plot hysteresis.png

Identify the input voltage threshold levels at which a Vin will produce VoutVcc

Compare the threshold values to what is expected.

The theory does say (ch. 10.19 The Schmitt Trigger R. Simpson "Introductory electronics for scientists and engineers"):

[math]V_2 = \frac{R_{123}}{R_2}V_{ref} + \frac{R_{123}}{R_3}V_{out}[/math]

1) if the output is high:

[math]V_2 = \frac{R_{123}}{R_2}V_{ref} + \frac{R_{123}}{R_3}V_{out_1}[/math]

2) if the output is low:

[math]V_2^' = \frac{R_{123}}{R_2}V_{ref} - \frac{R_{123}}{R_3}V_{out_1}[/math]

where

[math]R_{123} = (R_1 || R_2 || R_3) = \frac{R_1 R_2 R_3}{R_1+R_2+R_3}[/math]

and Vout1 and Vout2 approximately equal to supply voltage Vcc


The actual measured values of high and low output voltages (they do not really equal to ±Vcc) are:

  1. Vout1=(+11.06±0.01) V
  2. Vout2=(10.54±0.01) V

Substituting all quantities in the formulas above:

[math]R_{123} = (1.01\pm 0.01)\ k\Omega\ ||\ (1.01\pm 0.01)\ k\Omega\ ||\ (5.10\pm 0.05)\ k\Omega = (0.459\pm 0.003)\ k\Omega[/math]
[math]V_2 = \frac{(0.459\pm 0.003)\ k\Omega}{(1.01\pm 0.01)\ k\Omega}(11.90\pm 0.01)\ V + \frac{(0.459\pm 0.003)\ k\Omega}{(5.10\pm 0.05)\ k\Omega}(11.06\pm 0.01)\ V[/math]
[math]V_2^' = \frac{(0.459\pm 0.003)\ k\Omega}{(1.01\pm 0.01)\ k\Omega}(11.90\pm 0.01)\ V - \frac{(0.459\pm 0.003)\ k\Omega}{(5.10\pm 0.05)\ k\Omega}(10.54\pm0.01)\ V[/math]

and doing math and propagating errors we end up with the following predicted threshold voltages:

1) If the output voltage is high the threshold voltage are:

[math]V_2 = (6.41\pm 0.07)\ V [/math]

1) If the output voltage is low the threshold voltage are:

[math]V_2 = (4.46\pm 0.06)\ V [/math]



Go Back to All Lab Reports Forest_Electronic_Instrumentation_and_Measurement