| 
				   | 
				
| Line 37: | 
Line 37: | 
|   |  |   |  | 
|   | Then    |   | Then    | 
| − | :<math>\left | \frac{V_{out}}{V_{in}}\right |  = \sqrt{\frac{R_L^2 + \left ( \frac{\omega^2 LC - 1}{\omega C}\right)^2}{(R + R_L)^2 +  \left ( \frac{\omega^2 LC - 1}{\omega C}\right)^2}}</math>  | + | :<math>\left | \frac{V_{out}}{V_{in}}\right |  = \sqrt{\frac{R_L^2 + \left ( \frac{\omega^2 - \omega_0^2}{\omega_0^2 \omega C}\right)^2}{(R + R_L)^2 +  \left ( \frac{\omega^2- \omega_0^2}{\omega_o^2 \omega C}\right)^2}}</math>  | 
|   |  |   |  | 
|   | === Phase shift===  |   | === Phase shift===  | 
		Revision as of 03:48, 2 February 2011
RLC circuit
An RLC circuit is a Resistor, an Inductors, and a Capacitor in series with an electromotive force.
Effective impedance
- [math]X_{out} = R_L + X_C + X_L = R_L + \frac{1}{i \omega C} + i \omega L[/math]
 
- [math]\left | X_{out} \right | =  \sqrt{\left [ R_L + i \left (\frac{-1}{\omega C} +  \omega L\right ) \right ]\left [ R - i \left (\frac{-1}{\omega C} + \omega L\right ) \right ]^*}[/math]
- [math]=  \sqrt{ R_L^2 +  \left ( \omega L -  \frac{1}{\omega C} \right )^2}[/math]
 
 
Gain
Loop Theorem 
- [math]V_{in} = I (R+ X_{out})[/math]
 
Voltage Divider
- [math]V_{AB}=V_{out} = \frac{X_{out}}{R + X_{out}}V_{in}[/math]
 
- [math]\left | \frac{V_{out}}{V_{in}}\right | = \sqrt{\left [ \frac{X_{out}}{R + X_{out}}\right ]\left [ \frac{X_{out}}{R + X_{out}}\right ]^*}[/math]
 
[math]R_L + i \left ( \omega L - \frac{1}{\omega C}\right)[/math] 
- [math]\left | \frac{V_{out}}{V_{in}}\right | = \sqrt{\left [ \frac{R_L + i \left ( \omega L - \frac{1}{\omega C}\right)}{R + R_L + i \left ( \omega L - \frac{1}{\omega C}\right)}\right ]\left [ \frac{R_L + i \left ( \omega L - \frac{1}{\omega C}\right)}{R + R_L + i \left ( \omega L - \frac{1}{\omega C}\right)}\right ]^*}[/math]
 
- [math] = \sqrt{\frac{R_L^2 + \left ( \omega L - \frac{1}{\omega C}\right)^2}{(R + R_L)^2 +  \left ( \omega L - \frac{1}{\omega C}\right)^2}}[/math]
 
- [math] = \sqrt{\frac{R_L^2 + \left ( \frac{\omega^2 LC - 1}{\omega C}\right)^2}{(R + R_L)^2 +  \left ( \frac{\omega^2 LC - 1}{\omega C}\right)^2}}[/math]
 
Let
- [math]\omega_0 = \sqrt{\frac{1}{LC}}[/math]
 
Then 
- [math]\left | \frac{V_{out}}{V_{in}}\right |  = \sqrt{\frac{R_L^2 + \left ( \frac{\omega^2 - \omega_0^2}{\omega_0^2 \omega C}\right)^2}{(R + R_L)^2 +  \left ( \frac{\omega^2- \omega_0^2}{\omega_o^2 \omega C}\right)^2}}[/math]
 
Phase shift