Difference between revisions of "Lab 3 RS"

From New IAC Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
    
 
    
 
  <math>R=10.5\ \Omega</math>   
 
  <math>R=10.5\ \Omega</math>   
  <math>R=1.250\ \mu F</math>
+
  <math>R=1.250\ \mbox{\mu F}</math>
 
  <math>\omega_b = \frac{1}{RC} = 76.2\ \mbox{kHz}</math>
 
  <math>\omega_b = \frac{1}{RC} = 76.2\ \mbox{kHz}</math>
  
Line 22: Line 22:
  
 
{| border="1"  cellpadding="10" cellspacing="0"
 
{| border="1"  cellpadding="10" cellspacing="0"
|<math>\nu\ \mbox{kHz}</math> ||<math>V_{in}\ [V]</math> || <math>V_{out}\ [V]</math> || <math>\frac{V_{out}}{V_{in}}</math>
+
|<math>\nu\ [\mbox{kHz}]</math> ||<math>V_{in}\ [V]</math> || <math>V_{out}\ [V]</math> || <math>\frac{V_{out}}{V_{in}}</math>
 
|-
 
|-
 
|0.1 ||5.0 ||5.0 ||1.0
 
|0.1 ||5.0 ||5.0 ||1.0

Revision as of 06:52, 23 January 2011

Go Back to All Lab Reports


RC Low-pass filter

1-50 kHz filter (20 pnts)

1. Design a low-pass RC filter with a break point between 1-50 kHz. The break point is the frequency at which the filter starts to attenuate the AC signal. For a Low pass filter, AC signals with a frequency above 1-50 kHz will start to be attenuated (not passed).

To design low-pass RC filter I had:
[math]R=10.5\ \Omega[/math]  
[math]R=1.250\ \mbox{\mu F}[/math]
[math]\omega_b = \frac{1}{RC} = 76.2\ \mbox{kHz}[/math]

2. Now construct the circuit using a non-polar capacitor.

TF EIM Lab3.png

3. Use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.

4. Measure the input [math](V_{in})[/math] and output [math](V_{out})[/math] voltages for at least 8 different frequencies[math] (\nu)[/math] which span the frequency range from 1 Hz to 1 MHz.

[math]\nu\ [\mbox{kHz}][/math] [math]V_{in}\ [V][/math] [math]V_{out}\ [V][/math] [math]\frac{V_{out}}{V_{in}}[/math]
0.1 5.0 5.0 1.0
1.0 4.2 4.2 1.0
2.0 3.2 3.1 0.97
5.0 1.8 1.6 0.89
10.0 1.14 0.88 0.77
16.7 0.90 0.54 0.60
20.0 0.88 0.48 0.54
25.0 0.82 0.38 0.46
33.3 0.78 0.28 0.36
50.0 0.76 0.18 0.24
100.0 0.75 0.09 0.12
125.0 0.74 0.07 0.095
200.0 0.75 0.04 0.053
333.3 0.76 0.03 0.039
200.0 0.76 0.03 0.039
1000.0 0.78 0.06 0.077

5. Graph the [math]\log \left(\frac{V_{out}}{V_{in}} \right)[/math] -vs- [math]\log (\nu)[/math]

phase shift (10 pnts)

  1. measure the phase shift between [math]V_{in}[/math] and [math]V_{out}[/math] as a function of frequency [math]\nu[/math]. Hint: you could use [math] V_{in}[/math] as an external trigger and measure the time until [math]V_{out}[/math] reaches a max on the scope [math](\sin(\omega t + \phi) = \sin\left ( \omega\left [t + \frac{\phi}{\omega}\right]\right )= \sin\left ( \omega\left [t + \delta t \right] \right ))[/math].

Questions

  1. compare the theoretical and experimentally measured break frequencies. (5 pnts)
  2. Calculate and expression for [math]\frac{V_{out}}{ V_{in}}[/math] as a function of [math]\nu[/math], [math]R[/math], and [math]C[/math]. The Gain is defined as the ratio of [math]V_{out}[/math] to [math]V_{in}[/math].(5 pnts)
  3. Sketch the phasor diagram for [math]V_{in}[/math],[math] V_{out}[/math], [math]V_{R}[/math], and [math]V_{C}[/math]. Put the current [math]I[/math] along the real voltage axis. (30 pnts)
  4. Compare the theoretical and experimental value for the phase shift [math]\theta[/math]. (5 pnts)
  5. what is the phase shift [math]\theta[/math] for a DC input and a very-high frequency input?(5 pnts)
  6. calculate and expression for the phase shift [math]\theta[/math] as a function of [math]\nu[/math], [math]R[/math], [math]C[/math] and graph [math]\theta[/math] -vs [math]\nu[/math]. (20 pnts)


Forest_Electronic_Instrumentation_and_Measurement

Go Back to All Lab Reports