Difference between revisions of "Lab 3 RS"

From New IAC Wiki
Jump to navigation Jump to search
Line 21: Line 21:
 
4. Measure the input <math>(V_{in})</math> and output <math>(V_{out})</math> voltages for at least 8 different frequencies<math> (\nu)</math>  which span the frequency range from 1 Hz to 1 MHz.
 
4. Measure the input <math>(V_{in})</math> and output <math>(V_{out})</math> voltages for at least 8 different frequencies<math> (\nu)</math>  which span the frequency range from 1 Hz to 1 MHz.
  
{| border="3"  cellpadding="20" cellspacing="0"
+
{| border="1"  cellpadding="10" cellspacing="0"
|<math>\nu</math> ||<math>V_{in}</math> || <math>V_{out}</math> || <math>\frac{V_{out}}{V_{in}}</math>
+
|<math>\nu\ [kHz]</math> ||<math>V_{in}\ [V]</math> || <math>V_{out}\ [V]</math> || <math>\frac{V_{out}}{V_{in}}</math>
 
|-
 
|-
| Hz || Volts || Volts ||
+
|0.1 ||5.0 ||5.0 ||1.0
 
|-
 
|-
| || || ||
+
|1.0 ||4.2 ||4.2 ||1.0
 
|-
 
|-
| || || ||
+
|2.0 ||3.2 ||3.1 ||0.97
 
|-
 
|-
| || || ||
+
|5.0 ||1.8 ||1.6 ||0.89
 
|-
 
|-
| || || ||
+
|10.0 ||1.14 ||0.88 ||0.77
 
|-
 
|-
| || || ||
+
|16.7 ||0.90 ||0.54 ||0.60
 
|-
 
|-
| || || ||
+
|20.0 ||0.88 ||0.48 ||0.54
 
|-
 
|-
| || || ||
+
|25.0 ||0.82 ||0.38 ||0.46
 
|-
 
|-
| || || ||
+
|33.3 ||0.78 ||0.28 ||0.36
 
|-
 
|-
 +
|50.0 ||0.76 ||0.18 ||0.24
 +
|-
 +
|100.0 ||0.75 ||0.09 ||0.12
 +
|-
 +
|125.0 ||0.74 ||0.07 ||0.095
 +
|-
 +
|200.0 ||0.75 ||0.04 ||0.053
 +
|-
 +
|333.3 ||0.76 ||0.03 ||0.039
 +
|-
 +
|200.0 ||0.76 ||0.03 ||0.039
 +
|-
 +
|1000.0 ||0.78 ||0.06 ||0.077
 
|}
 
|}
  

Revision as of 06:48, 23 January 2011

Go Back to All Lab Reports


RC Low-pass filter

1-50 kHz filter (20 pnts)

1. Design a low-pass RC filter with a break point between 1-50 kHz. The break point is the frequency at which the filter starts to attenuate the AC signal. For a Low pass filter, AC signals with a frequency above 1-50 kHz will start to be attenuated (not passed).

To design low-pass RC filter I had:
[math]R=10.5\ \Omega[/math]
[math]R=1.250\ \mu F[/math]
[math]\omega_b = \frac{1}{RC} = 76.2\ kHz[/math]

2. Now construct the circuit using a non-polar capacitor.

TF EIM Lab3.png

3. Use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.

4. Measure the input [math](V_{in})[/math] and output [math](V_{out})[/math] voltages for at least 8 different frequencies[math] (\nu)[/math] which span the frequency range from 1 Hz to 1 MHz.

[math]\nu\ [kHz][/math] [math]V_{in}\ [V][/math] [math]V_{out}\ [V][/math] [math]\frac{V_{out}}{V_{in}}[/math]
0.1 5.0 5.0 1.0
1.0 4.2 4.2 1.0
2.0 3.2 3.1 0.97
5.0 1.8 1.6 0.89
10.0 1.14 0.88 0.77
16.7 0.90 0.54 0.60
20.0 0.88 0.48 0.54
25.0 0.82 0.38 0.46
33.3 0.78 0.28 0.36
50.0 0.76 0.18 0.24
100.0 0.75 0.09 0.12
125.0 0.74 0.07 0.095
200.0 0.75 0.04 0.053
333.3 0.76 0.03 0.039
200.0 0.76 0.03 0.039
1000.0 0.78 0.06 0.077

5. Graph the [math]\log \left(\frac{V_{out}}{V_{in}} \right)[/math] -vs- [math]\log (\nu)[/math]

phase shift (10 pnts)

  1. measure the phase shift between [math]V_{in}[/math] and [math]V_{out}[/math] as a function of frequency [math]\nu[/math]. Hint: you could use [math] V_{in}[/math] as an external trigger and measure the time until [math]V_{out}[/math] reaches a max on the scope [math](\sin(\omega t + \phi) = \sin\left ( \omega\left [t + \frac{\phi}{\omega}\right]\right )= \sin\left ( \omega\left [t + \delta t \right] \right ))[/math].

Questions

  1. compare the theoretical and experimentally measured break frequencies. (5 pnts)
  2. Calculate and expression for [math]\frac{V_{out}}{ V_{in}}[/math] as a function of [math]\nu[/math], [math]R[/math], and [math]C[/math]. The Gain is defined as the ratio of [math]V_{out}[/math] to [math]V_{in}[/math].(5 pnts)
  3. Sketch the phasor diagram for [math]V_{in}[/math],[math] V_{out}[/math], [math]V_{R}[/math], and [math]V_{C}[/math]. Put the current [math]I[/math] along the real voltage axis. (30 pnts)
  4. Compare the theoretical and experimental value for the phase shift [math]\theta[/math]. (5 pnts)
  5. what is the phase shift [math]\theta[/math] for a DC input and a very-high frequency input?(5 pnts)
  6. calculate and expression for the phase shift [math]\theta[/math] as a function of [math]\nu[/math], [math]R[/math], [math]C[/math] and graph [math]\theta[/math] -vs [math]\nu[/math]. (20 pnts)


Forest_Electronic_Instrumentation_and_Measurement

Go Back to All Lab Reports