Difference between revisions of "Lab 5 TF EIM"

From New IAC Wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
#Design a parallel LC resonant circuit with a resonant frequency between 50-200 kHz.  use <math>L</math> = 10 - 100 <math>\mu H</math>.
 
#Design a parallel LC resonant circuit with a resonant frequency between 50-200 kHz.  use <math>L</math> = 10 - 100 <math>\mu H</math>.
 
#Construct the LC circuit using a non-polar capacitor
 
#Construct the LC circuit using a non-polar capacitor
#Measure the Gain <math>\equiv \frac{V_{out}}{V_{in}}</math> as a function of frequency.
+
#Measure the Gain <math>\equiv \frac{V_{out}}{V_{in}}</math> as a function of frequency. (10 pnts)
#Measure the Gain when you insert an external resistance approximately equal to the inherent resistance of the rf choke <math>R_{L}</math>.
+
#Measure the Gain when an external resistance approximately equals to the inherent resistance of the rf choke <math>R_{L}</math>. (10 pnts)
#Compare the measured and theoretical values from the resonance frequency (<math>\omega_{L}</math>) and the Quality factor <math>Q \equiv 2 \pi \frac{W_S}{W_L} = 2 \pi \frac{\mbox{Energy Stored}}{\mbox{Energy Lost}}</math> value for each case; <math>W = \frac{1}{2}Li^2</math>.
+
#Compare the measured and theoretical values from the resonance frequency (<math>\omega_{L}</math>) and the Quality factor <math>Q \equiv 2 \pi \frac{W_S}{W_L} = 2 \pi \frac{\mbox{Energy Stored}}{\mbox{Energy Lost}}</math> value for each case; <math>W = \frac{1}{2}Li^2</math>. (10 pnts)
 +
 
 +
==Questions==
 +
 
 +
#If r=0, show that <math>Q = \frac{1}{\omgea_0 R_L C}</math>. (10 pnts)
 +
#Show that at resonance<math> Z_{AB} \approx Q \omega_0 L</math>. (10 pnts)
  
 
=The LRC cicuit=
 
=The LRC cicuit=

Revision as of 19:57, 24 October 2010

LC Resonance circuits

The LC cicuit

  1. Design a parallel LC resonant circuit with a resonant frequency between 50-200 kHz. use [math]L[/math] = 10 - 100 [math]\mu H[/math].
  2. Construct the LC circuit using a non-polar capacitor
  3. Measure the Gain [math]\equiv \frac{V_{out}}{V_{in}}[/math] as a function of frequency. (10 pnts)
  4. Measure the Gain when an external resistance approximately equals to the inherent resistance of the rf choke [math]R_{L}[/math]. (10 pnts)
  5. Compare the measured and theoretical values from the resonance frequency ([math]\omega_{L}[/math]) and the Quality factor [math]Q \equiv 2 \pi \frac{W_S}{W_L} = 2 \pi \frac{\mbox{Energy Stored}}{\mbox{Energy Lost}}[/math] value for each case; [math]W = \frac{1}{2}Li^2[/math]. (10 pnts)

Questions

  1. If r=0, show that [math]Q = \frac{1}{\omgea_0 R_L C}[/math]. (10 pnts)
  2. Show that at resonance[math] Z_{AB} \approx Q \omega_0 L[/math]. (10 pnts)

The LRC cicuit

Forest_Electronic_Instrumentation_and_Measurement