Difference between revisions of "Geometry (44 MeV LINAC exit port)"

From New IAC Wiki
Jump to navigation Jump to search
Line 49: Line 49:
  
  
 +
==Collimator critical angle==
  
 +
  AB = AC - BD/2 = (2.35 - 1.67/2) cm = 1.52 cm<br>
 +
  A1D1 = A1C1 + B1D1/2 = (3.85 + 2.74/2) cm = 5.22 cm<br>
 +
  ED1 = A1D1 - AB = (5.22 - 1.52) cm = 3.70 cm
 +
 
 +
from triangle <math>BEB_1<math>
  
 
+
  <math> \tan (\alpha) = \frac{3.70\ cm}{183\ cm} \Rightarrow \alpha = 1.16^o</math>
 +
   
  
 
[http://wiki.iac.isu.edu/index.php/PhotoFission_with_Polarized_Photons_from_HRRL Go Back]
 
[http://wiki.iac.isu.edu/index.php/PhotoFission_with_Polarized_Photons_from_HRRL Go Back]

Revision as of 05:41, 25 May 2010

Go Back

Some measurements of 90 experimental degree exit port

Exit port1.png


Critical angle and displacement calculations

[math]\Theta = \frac{m_ec^2}{E_{beam}} = \frac{0.511\ MeV}{44\ MeV} = 0.67\ ^o[/math]


Kicker angle and displacement calculations

1 foot = 30.48 cm

accelerator's side wall

  [math]\Delta = 286\ cm\ *\ \tan(0.67^o) = 3.34\ cm[/math] 
  [math]x^2+x^2 = 3.34^2\ cm \ \ \Rightarrow\ \  x = 2.36\ cm[/math]
  [math]\Delta = 2.36\ cm \ \ \Rightarrow\ \ \tan^{-1}\left(\frac{2.36}{286}\right) = 0.47\ ^o[/math]

detector's side wall

  [math]\Delta = (286\ cm + 183\ cm)\ *\ \tan(0.67^o) = 5.48\ cm[/math]
  [math]\Delta = (286\ cm + 183\ cm)\ *\ \tan(0.47^o) = 3.85\ cm[/math]

Off-axis collimation geometry

Beam up down5.png


Vacuum pipe

Collimator location

1) center position

  [math]286\ cm \cdot \tan (0.47) = 2.35\ cm[/math]  (wall 1)
[math](286 + 183)\ cm \cdot \tan (0.47) = 3.85\ cm[/math] (wall 2)

2) assume diameter is [math]\Theta_c/2 = 0.67^o/2 = 0.335^o[/math]

  [math]286\ cm \cdot \tan (0.335) = 1.67\ cm[/math]  (wall 1)
[math](286 + 183)\ cm \cdot \tan (0.335) = 2.74\ cm[/math] (wall 2)


Collimator critical angle

  AB = AC - BD/2 = (2.35 - 1.67/2) cm = 1.52 cm
A1D1 = A1C1 + B1D1/2 = (3.85 + 2.74/2) cm = 5.22 cm
ED1 = A1D1 - AB = (5.22 - 1.52) cm = 3.70 cm

from triangle [math]BEB_1\lt math\gt \lt math\gt \tan (\alpha) = \frac{3.70\ cm}{183\ cm} \Rightarrow \alpha = 1.16^o[/math]


Go Back