Difference between revisions of "FC Analysis"
Jump to navigation
Jump to search
Line 4: | Line 4: | ||
For each ADC channel: | For each ADC channel: | ||
<math> ADCSum^{channel}=\sum_{i=1}^{pulses}{ADC_{pulse}^{channel}}</math><br><br> | <math> ADCSum^{channel}=\sum_{i=1}^{pulses}{ADC_{pulse}^{channel}}</math><br><br> | ||
− | <math> ADCErr^{channel}=\sqrt{\frac{\sum_{i=1}^{pulses}{ADC_{pulse}^{channel}}}{pulses}}</math><br> | + | <math> ADCErr^{channel}=\sqrt{\frac{\sum_{i=1}^{pulses}{ADC_{pulse}^{channel}}}{pulses}}</math><br><br> |
For distribution over all ADC channel: | For distribution over all ADC channel: |
Revision as of 03:53, 5 April 2010
FC analysis using ADC channel current distribution
For each ADC channel:
For distribution over all ADC channel:
FC analysis using pulse by pulse ADC channel mean value distribution
For each beam pulse:
For distribution over all beam pulses:
Here is:
1. ADC# = bridge#
2. Pulse# = ReadOut# = Entry# = Event#
Some examples of ADC mean value distribution. Here are:
1. x axis: ADC mean value for one pulse
2. y axis: number of pulse w/ that ADC mean value
Below is the plot of the charge in Faraday cup (pC) as a function of magnet current (vertical axis, A) (basically magnetic field) and ADC (horizontal axis).