Difference between revisions of "FC Analysis"

From New IAC Wiki
Jump to navigation Jump to search
Line 2: Line 2:
  
 
=FC analysis using ADC channel current distribution=
 
=FC analysis using ADC channel current distribution=
 
+
=FC analysis using ADC channel current distribution=
 +
=FC analysis using ADC channel current distribution=
 +
=FC analysis using ADC channel current distribution=
 +
=FC analysis using ADC channel current distribution=
  
  

Revision as of 02:49, 5 April 2010

Go Back

FC analysis using ADC channel current distribution

FC analysis using ADC channel current distribution

FC analysis using ADC channel current distribution

FC analysis using ADC channel current distribution

FC analysis using ADC channel current distribution

FC analysis using pulse by pulse ADC channel mean value distribution

For each beam pulse:

[math] ADC_{avg}^{pulse}=\frac{\sum_{i=1}^{16}{ADC_{i}*i}}{\sum_{i=1}^{16}{ADC_{i}}};[/math]

For distribution over all beam pulses:

[math] ADC_{ave}=\frac{\sum_{i=1}^{pulses}{ADC_{avg}^{pulse}}}{pulses};[/math]
[math] ADC_{sigma}={ \sqrt{\frac{1}{pulses}\sum_{i=1}^{pulses}{\left(ADC_{avg}^{pulse} - ADC_{avg}\right)^{2}}}};[/math]

Here is:
1. ADC# = bridge#
2. Pulse# = ReadOut# = Entry# = Event#

FC data 23.png

FC plot 2 4.png



Some examples of ADC mean value distribution. Here are:
1. x axis: ADC mean value for one pulse
2. y axis: number of pulse w/ that ADC mean value
1477 1.png1473 1.png
1461 1.png1465 1.png

Below is the plot of the charge in Faraday cup (pC) as a function of magnet current (vertical axis, A) (basically magnetic field) and ADC (horizontal axis).

Far.jpg

Go Up