Difference between revisions of "FC Analysis"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
[http://wiki.iac.isu.edu/index.php/PhotoFission_with_Polarized_Photons_from_HRRL Go Back]
 
[http://wiki.iac.isu.edu/index.php/PhotoFission_with_Polarized_Photons_from_HRRL Go Back]
  
For each beam pulse:<br>
+
For each beam pulse:
 
  <math> ADC_{avg}^{pulse}=\frac{\sum_{i=1}^{16}{ADC_{i}*i}}{\sum_{i=1}^{16}{ADC_{i}}};</math>
 
  <math> ADC_{avg}^{pulse}=\frac{\sum_{i=1}^{16}{ADC_{i}*i}}{\sum_{i=1}^{16}{ADC_{i}}};</math>
  
For distribution over all beam pulses:<br>
+
For distribution over all beam pulses:
 
  <math> ADC_{ave}=\frac{\sum_{i=1}^{pulses}{ADC_{avg}^{pulse}}}{pulses};</math><br>
 
  <math> ADC_{ave}=\frac{\sum_{i=1}^{pulses}{ADC_{avg}^{pulse}}}{pulses};</math><br>
 
  <math> ADC_{sigma}={ \sqrt{\frac{1}{pulses}\sum_{i=1}^{pulses}{\left(ADC_{avg}^{pulse} - ADC_{avg}\right)^{2}}}};</math>
 
  <math> ADC_{sigma}={ \sqrt{\frac{1}{pulses}\sum_{i=1}^{pulses}{\left(ADC_{avg}^{pulse} - ADC_{avg}\right)^{2}}}};</math>
  
<br>Here is:<br>
+
Here is:<br>
 
1. ADC# = bridge#<br>
 
1. ADC# = bridge#<br>
 
2. Pulse# = ReadOut# = Entry# = Event#  
 
2. Pulse# = ReadOut# = Entry# = Event#  

Revision as of 06:12, 28 March 2010

Go Back

For each beam pulse:

[math] ADC_{avg}^{pulse}=\frac{\sum_{i=1}^{16}{ADC_{i}*i}}{\sum_{i=1}^{16}{ADC_{i}}};[/math]

For distribution over all beam pulses:

[math] ADC_{ave}=\frac{\sum_{i=1}^{pulses}{ADC_{avg}^{pulse}}}{pulses};[/math]
[math] ADC_{sigma}={ \sqrt{\frac{1}{pulses}\sum_{i=1}^{pulses}{\left(ADC_{avg}^{pulse} - ADC_{avg}\right)^{2}}}};[/math]

Here is:
1. ADC# = bridge#
2. Pulse# = ReadOut# = Entry# = Event#


FC data 23.png

   FC plot 2 4.png



Some examples of ADC mean value distribution. Here are:
1. x axis: ADC mean value for one pulse
2. y axis: number of pulse w/ that ADC mean value
1477.png 1473.png
1461.png 1465.png

Below is the plot of the charge in Faraday cup (pC) as a function of magnet current (vertical axis, A) (basically magnetic field) and ADC (horizontal axis).

Far.jpg

Go Up