Difference between revisions of "FC Analysis"

From New IAC Wiki
Jump to navigation Jump to search
Line 2: Line 2:
  
 
For each beam pulse:<br>
 
For each beam pulse:<br>
  <math> ADC_{ave}^{pulse}=\frac{\sum_{i=1}^{16}{ADC_{i}*i}}{\sum_{i=1}^{16}{ADC_{i}}}; </math>
+
  <math> ADC_{ave}^{pulse}=\frac{\sum_{i=1}^{16}{ADC_{i}*i}}{\sum_{i=1}^{16}{ADC_{i}}};</math>
  
 
For distribution over all beam pulses:<br>
 
For distribution over all beam pulses:<br>
  <math> ADC_{ave}={ \sqrt{\frac{1}{pulses}\sum_{i=1}^{pulses}{\left(ADC_{ave}^{pulse} - ADC_{ave}\right)^{2}}}}  
+
  <math> ADC_{ave}=\frac{\sum_{i=1}^{16}{ADC_{i}}}{pulses};
                  ; </math>
+
        ADC_{sigma}={ \sqrt{\frac{1}{pulses}\sum_{i=1}^{pulses}{\left(ADC_{ave}^{pulse} - ADC_{ave}\right)^{2}}}};</math>
  
  

Revision as of 07:19, 27 March 2010

Go Back

For each beam pulse:

[math] ADC_{ave}^{pulse}=\frac{\sum_{i=1}^{16}{ADC_{i}*i}}{\sum_{i=1}^{16}{ADC_{i}}};[/math]

For distribution over all beam pulses:

[math] ADC_{ave}=\frac{\sum_{i=1}^{16}{ADC_{i}}}{pulses};
        ADC_{sigma}={ \sqrt{\frac{1}{pulses}\sum_{i=1}^{pulses}{\left(ADC_{ave}^{pulse} - ADC_{ave}\right)^{2}}}};[/math]



FC calculation 2 3.png

FC plot 2 3.png

Below is the plot of the charge in Faraday cup (pC) as a function of magnet current (vertical axis, A) (basically magnetic field) and ADC (horizontal axis).

Far.jpg

Go Back