|
|
Line 17: |
Line 17: |
| |10/4/07 || 21 || 330 || 2029 || 96.62 || | | |10/4/07 || 21 || 330 || 2029 || 96.62 || |
| |- | | |- |
− | |10/15/07 || 69 || 330 || 2180 || 31.59 || | + | |10/15/07 || 21 || 330 || 2180 || || |
| |- | | |- |
| |10/18/07 || 21 || 330 || 2064 || 98.52 || | | |10/18/07 || 21 || 330 || 2064 || 98.52 || |
Line 30: |
Line 30: |
| |} | | |} |
| | | |
− | {| border="5"
| |
− | ! Date || Time (hrs) || <math>\theta</math> || Coincidence Counts || Coinc/Hour || <math>\sqrt{N}</math>
| |
− | |-
| |
− | |9/6/07|| 18 || 45 || 1065 || 59.2 ||
| |
− | |-
| |
− | |9/7/07 || 14.66 || 45|| 881 || 60.1 ||
| |
− | |-
| |
− | |9/9/07|| 43 || 60|| 1558 || 36.23 ||
| |
− | |-
| |
− | |9/12/07 || 20.5 || 330|| 2233 || 108.93 ||
| |
− | |-
| |
− | |9/13/07 || 21 || 315 || 2261 || 107.67 ||
| |
− | |-
| |
− | |9/14/07 || 21 || 330 || 1582 || 75.33 ||
| |
− | |-
| |
− | |9/18/07 || 21 || 300 || 1108 || 52.8 ||
| |
− | |-
| |
− | |9/19/07 || 21 || 300 || 1210 || 57.62 ||
| |
− | |-
| |
− | |9/20/07 || 21|| 300 || 1111 || 52.69 ||
| |
− | |-
| |
− | |9/21/07 || 21 || 300 || 1012 || 57.62 ||
| |
− | |-
| |
− | |9/26/07 || 21 || 315 || 1669 || 79.48 ||
| |
− | |-
| |
− | |9/27/07 || 21 || 315 || 1756 || 83.29 ||
| |
− | |-
| |
− | |9/29/07 || 24.5 || 315 || 2334 || 95.27 ||
| |
− | |-
| |
− | |10/3/07 || 21 || 330 || 2282 || 108.67 ||
| |
− | |-
| |
− | |10/4/07 || 21 || 330 || 2029 || 96.62 ||
| |
− | |-
| |
− | |10/10/07 || 21 || 315 || 1947 || 92.71 ||
| |
− | |-
| |
− | |10/15/07 || 69 || 330 || 2180 || 31.59 ||
| |
− | |-
| |
− | |10/18/07 || 21 || 330 || 2064 || 98.52 ||
| |
− | |-
| |
− | | 10/23/07 || 21 || 330 || 2003 || 95.38 ||
| |
− | |-
| |
− | | 10/26/07 || 21 || 330 || 1943 || 92.52 ||
| |
− | |-
| |
− | | 11/2/07 || 21 || 330 || 2784 || ||
| |
− | |-
| |
− | | 11/5/07 || 69 || 330 || 10251 || 148.57
| |
− | |-
| |
− | | 11/16/07 || 21 || 30 || 3581 || 170.52
| |
− | |}
| |
| | | |
| <br> | | <br> |
Revision as of 02:52, 1 March 2010
Instrumental and Statistical Uncertainties
P=68% = Probability that a measurement of a Gaussian variant will lie within 1 [math]\sigma[/math] of the mean
Example of cosmic counting experiments. Is the variation statistical?
Date |
Time (hrs) |
[math]\theta[/math] |
Coincidence Counts |
Coinc/Hour |
[math]\sqrt{N}[/math]
|
9/12/07 |
20.5 |
330 |
2233 |
108.93 |
|
9/14/07 |
21 |
330 |
1582 |
75.33 |
|
10/3/07 |
21 |
330 |
2282 |
108.67 |
|
10/4/07 |
21 |
330 |
2029 |
96.62 |
|
10/15/07 |
21 |
330 |
2180 |
|
|
10/18/07 |
21 |
330 |
2064 |
98.52 |
|
10/23/07 |
21 |
330 |
2003 |
95.38 |
|
10/26/07 |
21 |
330 |
1943 |
92.52 |
|
11/2/07 |
21 |
330 |
2784 |
|
|
11/5/07 |
69 |
330 |
10251 |
148.57
|
Taylor Expansion
A quantity which is calculated using quantities with known uncertainties will have an uncertainty based upon the uncertainty of the quantities used in the calculation.
To determine the uncertainty in a quantity which is a function of other quantities, you can consider the dependence of these quantities in terms of a tayler expansion
Consider a calculation of a Table's Area
[math]A= L \times W[/math]
The mean that the Area (A) is a function of the Length (L) and the Width (W) of the table.
[math]A = f(L,W)[/math]
The Taylor series expansion of a function f(x) about the point a is given as
[math]f(x) = f(a) + \left . f^{\prime}(x)\right |_{x=a} \frac{x}{1!} + \left . f^{\prime \prime}(x)\right |_{x=a} \frac{x^2}{2!} + ...[/math]
- [math]= \left . \sum_{n=0}^{\infty} f^{(n)}(x)\right |_{x=a} \frac{x^n}{n!}[/math]
For small values of x (x << 1) we can expand the function about 0 such that
[math]\sqrt{1+x} = \left . \sqrt{1-0} \frac{1}{2}(1+x)^{-1/2}\right |_{x=0} \frac{x^1}{1!}+ \left . \frac{1}{2}\frac{-1}{2}(1+x)^{-3/2} \right |_{x=0} \frac{x^2}{2!}[/math]
- [math]=1 + \frac{x}{2} - \frac{x^2}{4}[/math]
The talylor expansion of a function with two variables[math] (x_1 , x_2)[/math] about the average of the two variables[math] (\bar {x_1} , \bar{x_2} )[/math] is given by
[math]f(x_1, x_2)=f(\bar {x}_1, \bar{x}_2)+(x_1-\bar {x}_1) \frac{\partial f}{\partial x_1}\bigg |_{(x_1 = \bar {x}_1, x_2 = \bar{x}_2)} +(x_2-\bar{x}_2) \frac{\partial f}{\partial x_2}\bigg |_{(x_1 = \bar {x}_1, x_2 = \bar{x}_2)}[/math]
or
[math]f(x_1, x_2)-f(\bar {x}_1, \bar{x}_2)=(x_1-\bar {x}_1) \frac{\partial f}{\partial x_1}\bigg |_{(x_1 = \bar {x}_1, x_2 = \bar{x}_2)} +(x_2-\bar{x}_2) \frac{\partial f}{\partial x_2}\bigg |_{(x_1 = \bar {x}_1, x_2 = \bar{x}_2)}[/math]
The term
[math]f(x_1, x_2)-f(\bar {x}_1, \bar{x}_2)[/math]
represents a small fluctuation of the function from its average [math]f(\bar {x}_1, \bar{x}_2)[/math] if we ignore higher order terms in the Taylor expansion ( this means the fluctuations are small).
Based on the Definition of Variance
- [math]\sigma^2 = \frac{\sum_{i=1}^{i=N} (x_i - \bar{x})^2}{N}[/math]
We can write the variance of the area
- [math]\sigma^2_A = \frac{\sum_{i=1}^{i=N} (A_i - \bar{A})^2}{N}[/math]
- [math]= \frac{\sum_{i=1}^{i=N} \left [ (L-\bar{L}) \frac{\partial A}{\partial L} \bigg |_{\bar L \bar W} + (W-\bar W) \frac{\partial A}{\partial W} \bigg |_{\bar L \bar WW} \right] ^2}{N}[/math]
- [math]= \frac{\sum_{i=1}^{i=N} \left [ (L-\bar{L}) \frac{\partial A}{\partial L} \bigg |_{\bar L \bar W} \right ] ^2}{N} + \frac{\sum_{i=1}^{i=N} \left [ (W-\bar W) \frac{\partial A}{\partial W} \bigg |_{\bar L \bar W} \right] ^2 }{N}[/math]
- [math]+2 \frac{\sum_{i=1}^{i=N} \left [ (L-\bar{L}) (W-\bar W) \frac{\partial A}{\partial L} \bigg |_{\bar L \bar W} \frac{\partial A}{\partial W} \bigg |_{\bar L \bar W} \right]^2}{N} [/math]
- [math]= \sigma^2_L \left ( \frac{\partial A}{\partial L} \right )^2 +\sigma^2_W \left ( \frac{\partial A}{\partial W} \right )^2 + 2 \sigma^2_{LW} \frac{\partial A}{\partial L} \frac{\partial A}{\partial W} [/math]
where
[math]\sigma^2_{LW} = \frac{\sum_{i=1}^{i=N} \left [ (L-\bar{L}) (W-\bar W) \right ]^2}{N}[/math] is defined as the Covariance between [math]L[/math] and [math]W[/math].
Weighted Mean and variance
If each observable ([math]x_i[/math]) is accompanied by an estimate of the uncertainty in that observable ([math]\delta x_i[/math]) then weighted mean is defined as
- [math]\bar{x} = \frac{ \sum_{i=1}^{i=n} \frac{x_i}{\delta x_i}}{\sum_{i=1}^{i=n} \frac{1}{\delta x_i}}[/math]
The variance of the distribution is defined as
- [math]\bar{x} = \sum_{i=1}^{i=n} \frac{1}{\delta x_i}[/math]
[1] Forest_Error_Analysis_for_the_Physical_Sciences