Difference between revisions of "TF ErrorAna PropOfErr"

From New IAC Wiki
Jump to navigation Jump to search
Line 48: Line 48:
 
:<math>\sigma^2_A = \frac{\sum_{i=1}^{i=N} (A_i - \bar{A})^2}{N}</math>
 
:<math>\sigma^2_A = \frac{\sum_{i=1}^{i=N} (A_i - \bar{A})^2}{N}</math>
  
 +
:<math>= \frac{\sum_{i=1}^{i=N} \left [ (L-\bar{L})  \frac{\partial A}{\partial L} \bigg |_{\bar L \bar W} + (W-\bar W) \frac{\partial A}{\partial W} \bigg |_{\bar L \bar WW} \right] ^2}{N}</math>
  
  

Revision as of 21:27, 9 January 2010

A quantity which is calculated using quantities with known uncertainties will have an uncertainty based upon the uncertainty of the quantities used in the calculation.

To determine the uncertainty in a quantity which is a function of other quantities, you can consider the dependence of these quantities in terms of a tayler expansion

Consider a calculation of a Table's Area

[math]A= L \times W[/math]

The mean that the Area (A) is a function of the Length (L) and the Width (W) of the table.

[math]A = f(L,W)[/math]


The Taylor series expansion of a function f(x) about the point a is given as

[math]f(x) = f(a) + f^{\prime}(x)|_{x=a} \frac{x}{1!} + f^{\prime \prime}(x)|_{x=a} \frac{x^2}{2!} + ...[/math]

[math]= \sum_{n=0}^{infty} f^{(n)}(x)|_{x=a} \frac{x^n}{n!}[/math]


For small values of x (x << 1) we can expand the function about 0 such that

[math]\sqrt{1+x} = \sqrt{1-0} | \frac{1}{2}(1+x)^{-1/2}|_{x=0} \frac{x^1}{1!}+ \frac{1}{2}\frac{-1}{2}(1+x)^{-3/2}|_{x=0} \frac{x^2}{2!}[/math]

[math]=1 + \frac{x}{2} - \frac{x^2}{4}[/math]


The talylor expansion of a function with two variables[math] (x_1 , x_1)[/math] about the average of the two variables[math] (\bar {x_1} , \bar{x_2} )[/math] is given by

[math]f(x_1, x_2)=f(\bar {x}_1, \bar{x}_2)+(x_1-\bar {x}_1) \frac{\partial f}{\partial x_1}\bigg |_{(x_1 = \bar {x}_1, x_2 = \bar{x}_2)} +(x_2-\bar{x}_2) \frac{\partial f}{\partial x_2}\bigg |_{(x_1 = \bar {x}_1, x_2 = \bar{x}_2)}[/math]

or

[math]f(x_1, x_2)-f(\bar {x}_1, \bar{x}_2)=(x_1-\bar {x}_1) \frac{\partial f}{\partial x_1}\bigg |_{(x_1 = \bar {x}_1, x_2 = \bar{x}_2)} +(x_2-\bar{x}_2) \frac{\partial f}{\partial x_2}\bigg |_{(x_1 = \bar {x}_1, x_2 = \bar{x}_2)}[/math]

The term

[math]f(x_1, x_2)-f(\bar {x}_1, \bar{x}_2)[/math]

represents a small fluctuation of the function from its average [math]f(\bar {x}_1, \bar{x}_2)[/math] if we ignore higher order terms in the Taylor expansion ( this means the fluctuations are small).

Based on the Definition of Variance

[math]\sigma^2 = \frac{\sum_{i=1}^{i=N} (x_i - \bar{x})^2}{N}[/math]


We can write the variance of the area

[math]\sigma^2_A = \frac{\sum_{i=1}^{i=N} (A_i - \bar{A})^2}{N}[/math]
[math]= \frac{\sum_{i=1}^{i=N} \left [ (L-\bar{L}) \frac{\partial A}{\partial L} \bigg |_{\bar L \bar W} + (W-\bar W) \frac{\partial A}{\partial W} \bigg |_{\bar L \bar WW} \right] ^2}{N}[/math]


[math]= \frac{\sum_{i=1}^{i=N} \left [ (L-\bar{L}) \frac{\partial A}{\partial L} \bigg |_{\bar L \bar W} \right ] ^2 + \frac{\sum_{i=1}^{i=N} \left [ (W-\bar W) \frac{\partial A}{\partial W} \bigg |_{\bar L \bar WW} \right] ^2}{N} +2 \frac{\sum_{i=1}^{i=N} \left [ (L-\bar{L}) (W-\bar W) \frac{\partial A}{\partial L} \bigg |_{\bar L \bar W} +\frac{\partial A}{\partial W} \bigg |_{\bar L \bar WW} \right] ^2}{N} \right ][/math]
=

[1] Forest_Error_Analysis_for_the_Physical_Sciences