Difference between revisions of "TF ErrorAna PropOfErr"
Line 32: | Line 32: | ||
<math>f(x_1, x_2)-f({x_o}_1, {x_o}_2)=(x_1-{x_o}_1) \frac{\partial f}{\partial x_1}\bigg |_{(x_1 = x_{01}, x_2 = x_{02})} +(x_2-{x_o}_2) \frac{\partial f}{\partial x_2}\bigg |_{(x_1 = x_{01}, x_2 = x_{02})}</math> | <math>f(x_1, x_2)-f({x_o}_1, {x_o}_2)=(x_1-{x_o}_1) \frac{\partial f}{\partial x_1}\bigg |_{(x_1 = x_{01}, x_2 = x_{02})} +(x_2-{x_o}_2) \frac{\partial f}{\partial x_2}\bigg |_{(x_1 = x_{01}, x_2 = x_{02})}</math> | ||
+ | |||
+ | The term | ||
+ | |||
+ | <math>f(x_1, x_2)-f({x_o}_1, {x_o}_2)</math> | ||
+ | |||
+ | represents a small fluctuation of the function from its average. |
Revision as of 20:36, 9 January 2010
A quantity which is calculated using quantities with known uncertainties will have an uncertainty based upon the uncertainty of the quantities used in the calculation.
To determine the uncertainty in a quantity which is a function of other quantities, you can consider the dependence of these quantities in terms of a tayler expansion
Consider a calculation of a Table's Area
The mean that the Area (A) is a function of the Length (L) and the Width (W) of the table.
The Taylor series expansion of a function f(x) about the point a is given as
For small values of x (x << 1) we can expand the function about 0 such that
The talylor expansion of a function with two variable is given by
or
The term
represents a small fluctuation of the function from its average.