Difference between revisions of "Forest AngMomRecoupling"
Jump to navigation
Jump to search
Line 10: | Line 10: | ||
<math>C^{1,\;\;\frac{1}{2},\frac{3}{2}}_{1,-\frac{1}{2},\frac{1}{2}}= \frac{1}{\sqrt{3}}</math> | <math>C^{1,\;\;\frac{1}{2},\frac{3}{2}}_{1,-\frac{1}{2},\frac{1}{2}}= \frac{1}{\sqrt{3}}</math> | ||
− | <math>C^{1,\;\;\frac{1}{2},\frac{1}{2}}_{1,-\frac{1}{2},\frac{1}{2}}= 1</math> | + | <math>C^{1,\;\;\frac{1}{2},\frac{1}{2}}_{1,-\frac{1}{2},\frac{1}{2}}= \frac{2}{\sqrt{3}}</math> |
+ | |||
+ | <math>C^{1,\;\;\frac{1}{2},\frac{1}{2}}_{0,\frac{1}{2},\frac{1}{2}}= -\frac{1}{\sqrt{3}}</math> | ||
+ | |||
Revision as of 20:53, 9 January 2010
The recoupling of two subsystems
with angular momenta and to a new system with total angular momentum is written as
: Clebsch-Gordon Coefficient