Difference between revisions of "TF DerivationOfCoulombForce"
Jump to navigation
Jump to search
| Line 49: | Line 49: | ||
:::<math>= \frac{1}{(2 \pi)^{3/2} } \int e^{i \vec{k} \cdot \vec{\xi}} \frac{e}{2 \pi)^{3/2} \epsilon_0} \frac{1}{k^2} dV_k</math> | :::<math>= \frac{1}{(2 \pi)^{3/2} } \int e^{i \vec{k} \cdot \vec{\xi}} \frac{e}{2 \pi)^{3/2} \epsilon_0} \frac{1}{k^2} dV_k</math> | ||
| − | :::<math>= \frac{e}{(2 \pi)^{3 | + | :::<math>= \frac{e}{(2 \pi)^{3} \epsilon_0} \int \frac{e^{i \vec{k} \cdot \vec{\xi}}}{k^2} dV_k</math> |
| Line 55: | Line 55: | ||
| − | :::<math>=\frac{e}{(2 \pi)^{3 | + | :::<math>=\frac{e}{(2 \pi)^{3} \epsilon_0} {{\int}_0}^{2\pi} d{\phi}_k {{\int}_0}^{\pi} d{\theta}_k {{\int}_0}^{\infty} dk \times k^2 sin{\theta}_k e^{i \vec{k} \cdot \vec{\xi}}</math> |
| − | :::= | + | :::<math>=\frac{e}{(2\pi)^2 \epsilon_0} {{\int}_0}^{\pi} {{\int}_0}^{\infty} sin{\theta}_k e^{ik \xi cos{\theta}_k} k^2 dk</math> |
| + | |||
| + | <math>u=cos\theta</math> | ||
| + | |||
| + | <math>du=sin\theta d\theta</math> | ||
Revision as of 04:39, 23 February 2009
- Poisson's Equation
Fourier Transform of Poisson's Equation
Product rule for dervatives
Gauss' Theorem:
Definition of derivative:
Substituting
Gauss' Low:
1.) Coulomb = potential in "k"(momentum) space
To find the potential in "coordinate" space just inverse transform