Difference between revisions of "TF DerivationOfCoulombForce"
Jump to navigation
Jump to search
| Line 46: | Line 46: | ||
To find the potential in "coordinate" <math>(\xi)</math> space just inverse transform | To find the potential in "coordinate" <math>(\xi)</math> space just inverse transform | ||
| − | :<math>phi (\xi) = \frac{1}{2 \pi)^{3/2} } \int e^{+ i \vec{k} \cdot \vec{\xi}} \phi (k) dV_k</math> | + | :<math>\phi (\xi) = \frac{1}{2 \pi)^{3/2} } \int e^{+ i \vec{k} \cdot \vec{\xi}} \phi (k) dV_k</math> |
:::<math>= \frac{1}{2 \pi)^{3/2} } \int e^{i \vec{k} \cdot \vec{\xi}} \frac{e}{2 \pi)^{3/2} \epsilon_0} \frac{1}{k^2} dV_k</math> | :::<math>= \frac{1}{2 \pi)^{3/2} } \int e^{i \vec{k} \cdot \vec{\xi}} \frac{e}{2 \pi)^{3/2} \epsilon_0} \frac{1}{k^2} dV_k</math> | ||
| + | :::<math>= \frac{e}{2 \pi)^{3/2} \epsilon_0} \int \frac{e^{i \vec{k} \cdot \vec{\xi}}}{k^2} dV_k</math> | ||
| + | |||
| + | |||
| + | :::::<math>dV_k=k^2 sin{\theta}_k d{\theta}_k d{\phi}_k dk</math> | ||
| + | |||
| + | |||
| + | :::<math>=\frac{e}{2 \pi)^{3/2} \epsilon_0} {{\int}_0}^{2\pi} d{\phi}_k {{\int}_0}^{\pi} d{\theta}_k {{\int}_0}^{\inf}</math> | ||
Revision as of 04:24, 23 February 2009
- Poisson's Equation
Fourier Transform of Poisson's Equation
Product rule for dervatives
Gauss' Theorem:
Definition of derivative:
Substituting
Gauss' Low:
1.) Coulomb = potential in "k"(momentum) space
To find the potential in "coordinate" space just inverse transform