Difference between revisions of "TF DerivationOfCoulombForce"
Jump to navigation
Jump to search
Line 48: | Line 48: | ||
:<math>phi (\xi) = \frac{1}{2 \pi)^{3/2} } \int e^{+ i \vec{k} \cdot \vec{\xi}} \phi (k) dV_k</math> | :<math>phi (\xi) = \frac{1}{2 \pi)^{3/2} } \int e^{+ i \vec{k} \cdot \vec{\xi}} \phi (k) dV_k</math> | ||
− | :::<math>= \frac{1}{2 \pi)^{3/2} } \int e^{i \vec{k} \cdot \vec{\xi}} frac{e}{2 \pi)^{3/2} \epsilon_0} \frac{1}{k^2} dV_k</math> | + | :::<math>= \frac{1}{2 \pi)^{3/2} } \int e^{i \vec{k} \cdot \vec{\xi}} \frac{e}{2 \pi)^{3/2} \epsilon_0} \frac{1}{k^2} dV_k</math> |
Revision as of 04:18, 23 February 2009
- Poisson's Equation
Fourier Transform of Poisson's Equation
Product rule for dervatives
Gauss' Theorem:
Definition of derivative:
Substituting
Gauss' Low:
1.) Coulomb
= potential in "k"(momentum) spaceTo find the potential in "coordinate"
space just inverse transform