Difference between revisions of "TF DerivationOfCoulombForce"
Jump to navigation
Jump to search
Line 33: | Line 33: | ||
<math>\frac{1}{(2 \pi)^{3/2} } \left \{\int \left \{ e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi - \phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} \right \} \cdot d\vec{A} + \int \phi {\nabla}^2 e^{-i \vec{k} \cdot \vec{\xi}} dV \right \} = \frac{-e}{2 \pi)^{3/2} \epsilon_0}</math> | <math>\frac{1}{(2 \pi)^{3/2} } \left \{\int \left \{ e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi - \phi \vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}} \right \} \cdot d\vec{A} + \int \phi {\nabla}^2 e^{-i \vec{k} \cdot \vec{\xi}} dV \right \} = \frac{-e}{2 \pi)^{3/2} \epsilon_0}</math> | ||
+ | |||
+ | |||
+ | <math>\frac{1}{(2 \pi)^{3/2} } \int \phi (-ik) (-ik) e^{-i \vec{k} \cdot \vec{\xi}} dV = \frac{-e}{2 \pi)^{3/2} \epsilon_0}</math> | ||
+ | |||
+ | |||
+ | <math>-k^2 \frac{1}{(2 \pi)^{3/2} } \int \phi(\xi) e^{-i \vec{k} \cdot \vec{\xi}} dV_{xi} = \frac{-e}{2 \pi)^{3/2} \epsilon_0}</math> | ||
+ | |||
+ | <math>-k^2 \phi(k) = \frac{-e}{2 \pi)^{3/2} \epsilon_0}</math> |
Revision as of 03:58, 23 February 2009
- Poisson's Equation
Fourier Transform of Poisson's Equation
Product rule for dervatives
Gauss' Theorem:
Definition of derivative:
Substituting
Gauss' Low: