Difference between revisions of "TF DerivationOfCoulombForce"
Jump to navigation
Jump to search
Line 15: | Line 15: | ||
:<math>\int \vec{\nabla} \cdot ( e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi ) dV = \oint_S e^{-i \vec{k}\cdot \vec{\xi}} \vec{\nabla}\cdot d\vec{A}</math> | :<math>\int \vec{\nabla} \cdot ( e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi ) dV = \oint_S e^{-i \vec{k}\cdot \vec{\xi}} \vec{\nabla}\cdot d\vec{A}</math> | ||
+ | |||
+ | |||
+ | :<math>(\vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}) \cdot (\vec{\nabla} \phi )) = \vec{\nabla} \cdot (\phi \vec{\nabla} e^{-i \vec{k}) - \phi {\nabla}^2 e^{-i \vec{k}</math> |
Revision as of 03:16, 23 February 2009
- Poisson's Equation
Fourier Transform of Poisson's Equation
Product rule for dervatives
Gauss' Theorem: