Difference between revisions of "Plastic Scintillator Calculation"
Line 37: | Line 37: | ||
Molecules per <math> cm^2 (K) = \frac{4.689*10^{21}molecules PVT}{cm^3} * 1cm = \frac{4.689*10^{21}molecules PVT}{cm^2} </math> | Molecules per <math> cm^2 (K) = \frac{4.689*10^{21}molecules PVT}{cm^3} * 1cm = \frac{4.689*10^{21}molecules PVT}{cm^2} </math> | ||
− | Weighted cross-section <math> (\sigma_w) = (1.030*10^{-26}cm^2 + 9.645*10^{-26}cm^2) + | + | Weighted cross-section <math> (\sigma_w) = (10*(1.030*10^{-26}cm^2 + 9.645*10^{-26}cm^2)) + (11*(1.716*10^{-27}cm^2 + 2.688*10^{-27}cm^2)) = 1.116*10^{-24}cm^2</math> |
− | Probability of interaction (%) <math>= 1. | + | Probability of interaction (%) <math>= 1.116*10^{-24}cm^2 * \frac{4.689*10^{21}molecules PVT}{cm^2} * 100% = 0.5233%</math> |
Doing the same calculations using the Bicron BC 408 PVT with anthracene [http://webh09.cern.ch/ajbell/Documents/Optical_Fibres/BICRON%20BC408.pdf] for the material yields a probability of <math>0.5294%</math> | Doing the same calculations using the Bicron BC 408 PVT with anthracene [http://webh09.cern.ch/ajbell/Documents/Optical_Fibres/BICRON%20BC408.pdf] for the material yields a probability of <math>0.5294%</math> |
Revision as of 05:36, 5 February 2009
Below is the calculations done to determine the probability of pair production depending on thickness of the scintillator.
Molecules per
(NOTE: is just the density of the scintillator material and N[A] is Avogadro's number)Molecules per
Weighted cross-section
Probability of interaction (%)
All cross sections listed here are pair production cross-sections
For carbon
orFor carbon
orFor hydrogen
orFor hydrogen
orAvogadro's number
Molecular formula for PVT
Density of polyvinyl toluene (a common scintillator material) [1])
(NOTE: this value is from Rexon RP 200or is it [2] (TF)H/C = 11/10
For the sample calculation the thickness will be set to 1 cm just to get probability per cm
So entering all the numbers into the 4 initial equations gives the following answers:
Molecules per
Molecules per
Weighted cross-section
Probability of interaction (%)
Doing the same calculations using the Bicron BC 408 PVT with anthracene [3] for the material yields a probability of