Difference between revisions of "Plastic Scintillator Calculation"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
Below is the calculations done to determine the probability of pair production depending on thickness of the scintillator.
 
Below is the calculations done to determine the probability of pair production depending on thickness of the scintillator.
  
Molecules per <math> cm^3 = \frac{grams CH_{2}}{cm^3} * \frac{mol}{gram} * \frac{N[A]}{mol} </math> (NOTE: <math> \frac{gram}{cm^3} </math> is just the density of the scintillator material
+
Molecules per <math> cm^3 = \frac{grams CH_{2}}{cm^3} * \frac{mol}{gram} * \frac{N[A]}{mol} </math> (NOTE: <math> \frac{gram}{cm^3} </math> is just the density of the scintillator material)
  
 
Molecules per <math> cm^2 (K) = \frac{Molecules}{cm^3} * Thickness </math>
 
Molecules per <math> cm^2 (K) = \frac{Molecules}{cm^3} * Thickness </math>

Revision as of 00:00, 5 February 2009

Below is the calculations done to determine the probability of pair production depending on thickness of the scintillator.

Molecules per [math] cm^3 = \frac{grams CH_{2}}{cm^3} * \frac{mol}{gram} * \frac{N[A]}{mol} [/math] (NOTE: [math] \frac{gram}{cm^3} [/math] is just the density of the scintillator material)

Molecules per [math] cm^2 (K) = \frac{Molecules}{cm^3} * Thickness [/math]

Weighted cross-section [math] (\sigma_w) = (\sigma_{elec}C + \sigma_{nucleus}C) + 2(\sigma_{elec}H + \sigma_{nucleus}H)[/math]

Probability of interaction [math]= \sigma_w * K [/math]


All cross sections listed here are pair production cross-sections

For carbon [math]\sigma_{nucleus} = 9.645*10^{-2} barns[/math] or [math]9.645*10^{-26}cm^2[/math]

For carbon [math]\sigma_{elec} = 1.030*10^{-2} barns[/math] or [math]1.030*10^{-26}cm^2[/math]

For hydrogen [math]\sigma_{nucleus} = 2.688*10^{-3} barns[/math] or [math]2.688*10^{-27}cm^2[/math]

For hydrogen [math]\sigma_{elec} = 1.716*10^{-3} barns[/math] or [math]1.716*10^{-27}cm^2[/math]

Go Back