Difference between revisions of "10-31-08 GEM HRRL Photon Runs"

From New IAC Wiki
Jump to navigation Jump to search
Line 159: Line 159:
  
  
 
+
{| border="3"  cellpadding="20" cellspacing="0"
 +
|Run Number || ||
 +
|-
 
[[Image:GEM_HRRL_Strip13_runBackgrnd_10-31-08.jpg|100px]] || [[Image:GEM_HRRL_Strip13_runBackgrnd_10-31-08_1.jpg|100px]]
 
[[Image:GEM_HRRL_Strip13_runBackgrnd_10-31-08.jpg|100px]] || [[Image:GEM_HRRL_Strip13_runBackgrnd_10-31-08_1.jpg|100px]]
 
|-
 
|-
Line 167: Line 169:
 
|-
 
|-
 
[[Image:GEM_HRRL_Strip13_run3_10-31-08.jpg|100px]] || [[Image:GEM_HRRL_Strip13_run3_10-31-08_1.jpg|100px]]
 
[[Image:GEM_HRRL_Strip13_run3_10-31-08.jpg|100px]] || [[Image:GEM_HRRL_Strip13_run3_10-31-08_1.jpg|100px]]
|-
+
|}<br>
  
 
==Position -vs Rate==
 
==Position -vs Rate==

Revision as of 20:26, 1 November 2008

The Goal today is to observe position dependence of photons on the GEM detector


Cell Cable Number GEM Strip # Counting House Cable # List File ADC #
A1 13 B1 3
A2 11 B2
A3 Trig B3
A4 2 B4
A6 16 B6
A7 8 B7
A8 5 B8
A9 NaI B9


B1 -> ADC1A


Run 0

GEM Backgrnd.mpa

GEM HV : VDrif = 3850, VGem = 3550

HRRL : E = 14 MeV, I =0

5 minutes long

Run 1

Run1.mpa

GEM HV : VDrif = 3850, VGem = 3550

HRRL : E = 14 MeV, I =20mA


ADC 1D has clear second peak at channel 150 but ADC1 does not. Lets Observe ADC 1D as a function of position. This corresponds to GEM output strip 13.

5 minutes long

Run 2

Run2.mpa

GEM HV : VDrif = 3550, VGem = 3550

HRRL : E = 14 MeV, I =20mA

5 minutes long


I see a second peak on ADC1D but it is at channels 100 and not 150.

Run 3

Run3.mpa

GEM HV : VDrif = 3550, VGem = 3550

HRRL : E = 14 MeV, I =20mA

3 minutes long

Unplug NaI and peak resumes near 150 channels

Run 4

Run4.mpa

GEM HV : VDrif = 3850, VGem = 3550

HRRL : E = 14 MeV, I =20mA


Now turn the detector on with the beam current on and I see a peak around 150 channels again.

3 minutes long. OOOPPPs left DAQ running while we moved the detector. Only look at first 3 minutes.

Pin 13 was located 63 cm from the mounting bracket horizontal cross bar.

Run 5

Run5.mpa

GEM HV : VDrif = 3850, VGem = 3550

HRRL : E = 14 MeV, I =20mA


Now move the detector away from the photons.

Pin 13 is a distance of 22 cm from the mounting bar moved 41 cm from its original location at 63 cm

Run 6

Run6.mpa

GEM HV : VDrif = 3850, VGem = 3550

HRRL : E = 14 MeV, I =20mA


Now move the detector away from the photons.

Pin 13 is a distance of 43 cm from the mounting bar moved 20 cm from its original location at 63 cm

Start 4:36 End 4:39

Run 7

Run7.mpa

GEM HV : VDrif = 3850, VGem = 3550

HRRL : E = 14 MeV, I =20mA


Now move the detector away from the photons.

Pin 13 is a distance of 33 cm from the mounting bar moved 30 cm from its original location at 63 cm

Start 5:51 End 5:54

Run 8

Run8.mpa

GEM HV : VDrif = 3850, VGem = 3550

HRRL : E = 14 MeV, I =20mA


Now move the detector away from the photons.

Pin 13 is a distance of 54 cm from the mounting bar moved 9 cm from its original location at 63 cm

Start : 5.03 End : 5:07

Analysis

Background -vs -signal

The graph below shows the observed rate from strip 13 of the GEM detector when the ionization signal was turned off. The signal from ionizing radiation was turned off in 2 ways. First the beam current was turned off (Run 0) and the output of the detector was measured while the RF was left on. Next the detector drift high voltage was lowered to the same voltage as the GEM HV (Run 3) in order to reduce the number of ionized electrons traveling to the charge collector for readout. The data from run 1 and run 4 was used illustrate the output of the GEM detector under normal running conditions.


GEM HRRL Strip13 runBackgrnd 10-31-08.jpg || GEM HRRL Strip13 runBackgrnd 10-31-08 1.jpgGEM HRRL Strip13 run1 10-31-08.jpg || GEM HRRL Strip13 run1 10-31-08 1.jpgGEM HRRL Strip13 run2 10-31-08.jpg || GEM HRRL Strip13 run2 10-31-08 1.jpgGEM HRRL Strip13 run3 10-31-08.jpg || GEM HRRL Strip13 run3 10-31-08 1.jpg
Run Number


Position -vs Rate

Run Number Distance From max Rate(cm) Run Time(seconds) Strip 13 Rate X 1000(per event [math]\times[/math]) Strip 13 Rate per minute Histogram Histogram(Zoomed In)
4 0 667.226
1 0 302.902 134 3642 GEM HRRL Strip13 run1 10-31-08.jpg GEM HRRL Strip13 run1 10-31-08 1.jpg
5 41 115.088 4.04 2868 GEM HRRL Strip13 run5 10-31-08.jpg GEM HRRL Strip13 run5 10-31-08 1.jpg GEM HRRL Strip13 run5 10-31-08 2.jpg
6 20 255.833 143.3 2910 GEM HRRL Strip13 run6 10-31-08.jpg GEM HRRL Strip13 run6 10-31-08 1.jpg
7 30 172.042 155.5 2934 GEM HRRL Strip13 run7 10-31-08.jpg GEM HRRL Strip13 run7 10-31-08 1.jpg
8 9 250.657 183.1 3612 GEM HRRL Strip13 run8 10-31-08.jpg GEM HRRL Strip13 run8 10-31-08 1.jpg


GEM HRRL Strip13 Result 10-31-08 distance from max rate vs rate.jpg

Summary

The above measurements indicate that the GEM detector responds to ionization radiation generated when a 14 MeV HRRL electron beam produces bremsstrahlung photons in a 1 mm beam exit window which are then collimator using a 4" wide lead brick wall with 1 mm thick shims place in between 2 lead bricks in order to produce a horizontal fan of photons. It was also clear that the detector rate decreases when moved away from the collimated photon beam. A clear separation was possible between the RF noise pickup on the detector and an ionzation signal when using the fast timing amplifier from ORTEC (Model 474, Maximum Gain setting X20).

Needs for the next test:

1.) A collimated electron beam using the 1 mm diameter aluminum brick as the primary collimator and the finger scintillator as the electron trigger


2.) A translation stage from the IAC to remotely move the GEM detector and test its position dependence.

3.) At least 9 ADC channels to measure the strip output. The CAEN ADCs in the VME DAQ system should have the sensitivity to measure the GEM output without the large amount of amplification used in the runs above.


Go back