Difference between revisions of "Notes from July 2nd, 2008 Meeting"
Jump to navigation
Jump to search
Line 27: | Line 27: | ||
<math> 10^{4} \frac{photodisintegrations}{sec} \times \frac{1}{4} \cdot 10^{-4} \times 10^{-1} = .025 \frac{events}{sec}</math> | <math> 10^{4} \frac{photodisintegrations}{sec} \times \frac{1}{4} \cdot 10^{-4} \times 10^{-1} = .025 \frac{events}{sec}</math> | ||
− | ::::::::::::::::::<math>\uparrow</math><math>\uparrow</math> | + | ::::::::::::::::::<math>\uparrow</math> <math>\uparrow</math> |
− | :::::::::::::::::geometry | + | :::::::::::::::::geometry efficiency |
Revision as of 14:00, 3 July 2008
Numbers for rate of Brems intensity spectrum:
=
Number of ɣ + d -> n + p events/sec
Probability of Photodisintegration Event
target thickness in
Worst Case Isotropic Neutrons
Let's say we have:
radius detector = 1 cm
1 meter away
fractional solid angle =
<= geometrical acceptance10 \degree efficient of n \degree detection
- geometry efficiency
time for events = 100 hours for 1%
- 24 hours for 2%
- 6 hours for 4%
Therefore, this experiment is do able.