Difference between revisions of "Determining the uncertainty of Eγ"

From New IAC Wiki
Jump to navigation Jump to search
Line 17: Line 17:
 
<math>\frac{\delta_m}{m}</math> = <math>\frac{0.00028}{939.565}</math>=<math>3x10^{-7}=3x10^{-5}</math>%
 
<math>\frac{\delta_m}{m}</math> = <math>\frac{0.00028}{939.565}</math>=<math>3x10^{-7}=3x10^{-5}</math>%
  
<math>\frac{\delta_d}{d}=\frac{0.005}{3}=1.67x10^{-4)=0.2%</math>
+
<math>\frac{\delta_d}{d}=\frac{0.005}{3}=0.2%</math>
  
 
<math>\frac{\delta_t}{t}=\frac{1}{50}=2%</math>
 
<math>\frac{\delta_t}{t}=\frac{1}{50}=2%</math>

Revision as of 08:45, 12 June 2008

To determine the uncertainty in Eγ we pick an angle for the neutron within [[math]\theta_n[/math], [math]\theta_n[/math] + Δ [math]\theta_n[/math]] and a momentum of the neutron between [[math]P_n[/math], [math]P_n[/math] + Δ [math]P_n[/math]].

What are reasonable Δ[math]\theta_n[/math] and Δ [math]P_n[/math]?

[math]P_n[/math] is determined by time of flight.

Knowns:

[math]m_n[/math] = 939.565 ± 0.00028 [math]MeV/c^2[/math]

d = 3 ± 0.005 m

t = 50 ± 1 ns

Fractional Uncertainties

[math]\frac{\delta_m}{m}[/math] = [math]\frac{0.00028}{939.565}[/math]=[math]3x10^{-7}=3x10^{-5}[/math]%

[math]\frac{\delta_d}{d}=\frac{0.005}{3}=0.2%[/math]

[math]\frac{\delta_t}{t}=\frac{1}{50}=2%[/math]