Difference between revisions of "Using Carbon or Aluminum to block photons"

From New IAC Wiki
Jump to navigation Jump to search
 
Line 1: Line 1:
 +
[http://wiki.iac.isu.edu/index.php/PhotoFission_with_Polarized_Photons_from_HRRL Go Back]
 +
 +
 
We're looking to see which is better for letting photons through, Carbon or Aluminum.
 
We're looking to see which is better for letting photons through, Carbon or Aluminum.
  
Line 106: Line 109:
  
 
[[Image:carbon_plot.jpg]]
 
[[Image:carbon_plot.jpg]]
 +
 +
[http://wiki.iac.isu.edu/index.php/PhotoFission_with_Polarized_Photons_from_HRRL Go Back]

Latest revision as of 06:28, 5 February 2009

Go Back


We're looking to see which is better for letting photons through, Carbon or Aluminum.


20 MeV for Carbon

range is 10.49gcm3

density of Carbon =  2.3gcm3

thickness = rangedensity=10.492.3=4.56cm

Therefore, the thickness of our Carbon is 4.56 cm

10 MeV hitting 4.56 cm of Carbon

n = 2.3gcm3×6.0221023atoms12g=1.21023atomscm3

σ = .41024cm2

nσt = 1.21023atomscm3×.41024cm2×4.56cm=.218

enσt=>e.218=.80=>80 of the photons get through the Carbon

What about Aluminum?

20 MeV for Aluminum

range is 10.54gcm3

density of Carbon = 2.7gcm3

thickness = rangedensity=10.542.7=3.9cm

Therefore, the thickness of our Aluminum is 3.9 cm

10 MeV hitting 3.9 cm of Aluminum

n = 2.7gcm3×6.0221023atoms27g=6.0221022atomscm3

σ = 1.0391024cm2

nσt = 6.0221022atomscm3×1.0391024cm2×3.9cm=.24

enσt=e.24=.79=>79 of the photons get through the Aluminum


Since more gets through Carbon, we're going to forget about Aluminum and focus solely on using Carbon.


So, we're keeping the same information for the 20 MeV for Carbon and calculate the rest of the information for 6, 8, 12, 13, and 14 MeV.

6 MeV hitting 4.56 cm of Carbon

n = 2.3gcm3×6.0221023atoms12g=1.21023atomscm3

σ = 4.9241025cm2

nσt = 1.21023atomscm3×4.9241025cm2×4.56cm=.269

enσt=>e.269=.76=>76 of the photons get through the Carbon


8 MeV hitting 4.56 cm of Carbon

n = 2.3gcm3×6.0221023atoms12g=1.21023atomscm3

σ = 4.2971025cm2

nσt = 1.21023atomscm3×4.2971025cm2×4.56cm=.235

enσt=>e.235=.79=>79 of the photons get through the Carbon


12 MeV hitting 4.56 cm of Carbon

n = 2.3gcm3×6.0221023atoms12g=1.21023atomscm3

σ = 3.6461025cm2

nσt = 1.21023atomscm3×3.6461025cm2×4.56cm=.199

enσt=>e.199=.83=>83 of the photons get through the Carbon


13 MeV hitting 4.56 cm of Carbon

n = 2.3gcm3×6.0221023atoms12g=1.21023atomscm3

σ = 3.5451025cm2

nσt = 1.21023atomscm3×3.5451025cm2×4.56cm=.194

enσt=>e.194=.82=>82 of the photons get through the Carbon


14 MeV hitting 4.56 cm of Carbon

n = 2.3gcm3×6.0221023atoms12g=1.21023atomscm3

σ = 3.4611025cm2

nσt = 1.21023atomscm3×3.4611025cm2×4.56cm=.189

enσt=>e.189=.83=>83 of the photons get through the Carbon

Carbon plot.jpg

Go Back