Difference between revisions of "Using Carbon or Aluminum to block photons"

From New IAC Wiki
Jump to navigation Jump to search
Line 20: Line 20:
 
nσt = <math>1.2 \cdot 10^{23} \frac{atoms}{cm^{3}} \times .4 \cdot 10^{-24} cm^{2} \times 4.56 cm = .218</math>
 
nσt = <math>1.2 \cdot 10^{23} \frac{atoms}{cm^{3}} \times .4 \cdot 10^{-24} cm^{2} \times 4.56 cm = .218</math>
  
<math>\,\!\, e^{-n \sigma t} => e^{.218} = .80 => 80%</math> of the photons get through the Carbon
+
<math>\,\!\, e^{-n \sigma t} => e^{-.218} = .80 => 80%</math> of the photons get through the Carbon
  
 
== What about Aluminum? ==
 
== What about Aluminum? ==
Line 42: Line 42:
 
nσt = <math>6.022 \cdot 10^{22} \frac{atoms}{cm^{3}} \times 1.039 \cdot 10^{-24} cm^{2} \times 3.9 cm = .24</math>
 
nσt = <math>6.022 \cdot 10^{22} \frac{atoms}{cm^{3}} \times 1.039 \cdot 10^{-24} cm^{2} \times 3.9 cm = .24</math>
  
<math>\,\!\, e^{-n \sigma t}=e^{.24}=.79=>79%</math> of the photons get through the Aluminum
+
<math>\,\!\, e^{-n \sigma t}=e^{-.24}=.79=>79%</math> of the photons get through the Aluminum
 +
 
 +
 
  
 
Since more gets through Carbon, we're going to forget about Aluminum and focus solely on using Carbon.
 
Since more gets through Carbon, we're going to forget about Aluminum and focus solely on using Carbon.
 +
 +
 +
So, we're keeping the same information for the 20 MeV for Carbon and calculate the rest of the information for 6, 8, 12, 13, and 14 MeV.
 +
 +
= 6 MeV hitting 4.56 cm of Carbon =
 +
 +
n = <math>2.3 \frac{g}{cm^{3}} \times \frac{6.022 \cdot 10^{23} atoms}{12 g} = 1.2 \cdot 10^{23} \frac{atoms}{cm^{3}}</math>
 +
 +
σ = <math>4.924 \cdot 10^{-25} cm^{2}</math>
 +
 +
nσt = <math>1.2 \cdot 10^{23} \frac{atoms}{cm^{3}} \times 4.924 \cdot 10^{-25} cm^{2} \times 4.56 cm = .269</math>
 +
 +
<math>\,\!\, e^{-n \sigma t} => e^{-.269} = .76 => 76%</math> of the photons get through the Carbon
 +
 +
 +
= 8 MeV hitting 4.56 cm of Carbon =
 +
 +
n = <math>2.3 \frac{g}{cm^{3}} \times \frac{6.022 \cdot 10^{23} atoms}{12 g} = 1.2 \cdot 10^{23} \frac{atoms}{cm^{3}}</math>
 +
 +
σ = <math>4.297 \cdot 10^{-25} cm^{2}</math>
 +
 +
nσt = <math>1.2 \cdot 10^{23} \frac{atoms}{cm^{3}} \times 4.297 \cdot 10^{-25} cm^{2} \times 4.56 cm = .235</math>
 +
 +
<math>\,\!\, e^{-n \sigma t} => e^{-.235} = .79 => 79%</math> of the photons get through the Carbon
 +
 +
 +
= 12 MeV hitting 4.56 cm of Carbon =
 +
 +
n = <math>2.3 \frac{g}{cm^{3}} \times \frac{6.022 \cdot 10^{23} atoms}{12 g} = 1.2 \cdot 10^{23} \frac{atoms}{cm^{3}}</math>
 +
 +
σ = <math>3.646 \cdot 10^{-25} cm^{2}</math>
 +
 +
nσt = <math>1.2 \cdot 10^{23} \frac{atoms}{cm^{3}} \times 3.646 \cdot 10^{-25} cm^{2} \times 4.56 cm = .199</math>
 +
 +
<math>\,\!\, e^{-n \sigma t} => e^{-.199} = .83 => 83%</math> of the photons get through the Carbon
 +
 +
 +
= 13 MeV hitting 4.56 cm of Carbon =
 +
 +
n = <math>2.3 \frac{g}{cm^{3}} \times \frac{6.022 \cdot 10^{23} atoms}{12 g} = 1.2 \cdot 10^{23} \frac{atoms}{cm^{3}}</math>
 +
 +
σ = <math>3.545 \cdot 10^{-25} cm^{2}</math>
 +
 +
nσt = <math>1.2 \cdot 10^{23} \frac{atoms}{cm^{3}} \times 3.545 \cdot 10^{-25} cm^{2} \times 4.56 cm = .194</math>
 +
 +
<math>\,\!\, e^{-n \sigma t} => e^{-.194} = .82 => 82%</math> of the photons get through the Carbon
 +
 +
 +
= 14 MeV hitting 4.56 cm of Carbon =
 +
 +
n = <math>2.3 \frac{g}{cm^{3}} \times \frac{6.022 \cdot 10^{23} atoms}{12 g} = 1.2 \cdot 10^{23} \frac{atoms}{cm^{3}}</math>
 +
 +
σ = <math>3.461 \cdot 10^{-25} cm^{2}</math>
 +
 +
nσt = <math>1.2 \cdot 10^{23} \frac{atoms}{cm^{3}} \times 3.461 \cdot 10^{-25} cm^{2} \times 4.56 cm = .189</math>
 +
 +
<math>\,\!\, e^{-n \sigma t} => e^{-.189} = .83 => 83%</math> of the photons get through the Carbon
 +
 +
[[Image:Carbon plot]]

Revision as of 11:08, 5 June 2008

We're looking to see which is better for letting photons through, Carbon or Aluminum.


20 MeV for Carbon

range is [math]10.49 \frac{g}{cm^{3}}[/math]

density of Carbon = [math]~2.3 \frac{g}{cm^{3}}[/math]

thickness = [math]\frac{range}{density} = \frac{10.49}{2.3} = 4.56 cm[/math]

Therefore, the thickness of our Carbon is 4.56 cm

10 MeV hitting 4.56 cm of Carbon

n = [math]2.3 \frac{g}{cm^{3}} \times \frac{6.022 \cdot 10^{23} atoms}{12 g} = 1.2 \cdot 10^{23} \frac{atoms}{cm^{3}}[/math]

σ = [math].4 \cdot 10^{-24} cm^{2}[/math]

nσt = [math]1.2 \cdot 10^{23} \frac{atoms}{cm^{3}} \times .4 \cdot 10^{-24} cm^{2} \times 4.56 cm = .218[/math]

[math]\,\!\, e^{-n \sigma t} =\gt e^{-.218} = .80 =\gt 80%[/math] of the photons get through the Carbon

What about Aluminum?

20 MeV for Aluminum

range is [math]10.54 \frac{g}{cm^{3}}[/math]

density of Carbon = [math]2.7 \frac{g}{cm^{3}}[/math]

thickness = [math]\frac{range}{density} = \frac{10.54}{2.7} = 3.9 cm[/math]

Therefore, the thickness of our Aluminum is 3.9 cm

10 MeV hitting 3.9 cm of Aluminum

n = [math]2.7 \frac{g}{cm^{3}} \times \frac{6.022 \cdot 10^{23} atoms}{27 g} = 6.022 \cdot 10^{22} \frac{atoms}{cm^{3}}[/math]

σ = [math]1.039 \cdot 10^{-24} cm^{2}[/math]

nσt = [math]6.022 \cdot 10^{22} \frac{atoms}{cm^{3}} \times 1.039 \cdot 10^{-24} cm^{2} \times 3.9 cm = .24[/math]

[math]\,\!\, e^{-n \sigma t}=e^{-.24}=.79=\gt 79%[/math] of the photons get through the Aluminum


Since more gets through Carbon, we're going to forget about Aluminum and focus solely on using Carbon.


So, we're keeping the same information for the 20 MeV for Carbon and calculate the rest of the information for 6, 8, 12, 13, and 14 MeV.

6 MeV hitting 4.56 cm of Carbon

n = [math]2.3 \frac{g}{cm^{3}} \times \frac{6.022 \cdot 10^{23} atoms}{12 g} = 1.2 \cdot 10^{23} \frac{atoms}{cm^{3}}[/math]

σ = [math]4.924 \cdot 10^{-25} cm^{2}[/math]

nσt = [math]1.2 \cdot 10^{23} \frac{atoms}{cm^{3}} \times 4.924 \cdot 10^{-25} cm^{2} \times 4.56 cm = .269[/math]

[math]\,\!\, e^{-n \sigma t} =\gt e^{-.269} = .76 =\gt 76%[/math] of the photons get through the Carbon


8 MeV hitting 4.56 cm of Carbon

n = [math]2.3 \frac{g}{cm^{3}} \times \frac{6.022 \cdot 10^{23} atoms}{12 g} = 1.2 \cdot 10^{23} \frac{atoms}{cm^{3}}[/math]

σ = [math]4.297 \cdot 10^{-25} cm^{2}[/math]

nσt = [math]1.2 \cdot 10^{23} \frac{atoms}{cm^{3}} \times 4.297 \cdot 10^{-25} cm^{2} \times 4.56 cm = .235[/math]

[math]\,\!\, e^{-n \sigma t} =\gt e^{-.235} = .79 =\gt 79%[/math] of the photons get through the Carbon


12 MeV hitting 4.56 cm of Carbon

n = [math]2.3 \frac{g}{cm^{3}} \times \frac{6.022 \cdot 10^{23} atoms}{12 g} = 1.2 \cdot 10^{23} \frac{atoms}{cm^{3}}[/math]

σ = [math]3.646 \cdot 10^{-25} cm^{2}[/math]

nσt = [math]1.2 \cdot 10^{23} \frac{atoms}{cm^{3}} \times 3.646 \cdot 10^{-25} cm^{2} \times 4.56 cm = .199[/math]

[math]\,\!\, e^{-n \sigma t} =\gt e^{-.199} = .83 =\gt 83%[/math] of the photons get through the Carbon


13 MeV hitting 4.56 cm of Carbon

n = [math]2.3 \frac{g}{cm^{3}} \times \frac{6.022 \cdot 10^{23} atoms}{12 g} = 1.2 \cdot 10^{23} \frac{atoms}{cm^{3}}[/math]

σ = [math]3.545 \cdot 10^{-25} cm^{2}[/math]

nσt = [math]1.2 \cdot 10^{23} \frac{atoms}{cm^{3}} \times 3.545 \cdot 10^{-25} cm^{2} \times 4.56 cm = .194[/math]

[math]\,\!\, e^{-n \sigma t} =\gt e^{-.194} = .82 =\gt 82%[/math] of the photons get through the Carbon


14 MeV hitting 4.56 cm of Carbon

n = [math]2.3 \frac{g}{cm^{3}} \times \frac{6.022 \cdot 10^{23} atoms}{12 g} = 1.2 \cdot 10^{23} \frac{atoms}{cm^{3}}[/math]

σ = [math]3.461 \cdot 10^{-25} cm^{2}[/math]

nσt = [math]1.2 \cdot 10^{23} \frac{atoms}{cm^{3}} \times 3.461 \cdot 10^{-25} cm^{2} \times 4.56 cm = .189[/math]

[math]\,\!\, e^{-n \sigma t} =\gt e^{-.189} = .83 =\gt 83%[/math] of the photons get through the Carbon

File:Carbon plot