Difference between revisions of "Calculation of radiation yield"
Jump to navigation
Jump to search
Line 29: | Line 29: | ||
<math>\gamma(=100k/E_0EZ^{1/3}) \leq 15</math> , <math>k<k_x</math>: | <math>\gamma(=100k/E_0EZ^{1/3}) \leq 15</math> , <math>k<k_x</math>: | ||
− | <math>\Phi_n(Z,E_0,k) = 4{[1+ (\frac{E}{E_0})^2][\frac{1}{4}\phi_1(\gamma)-\frac{1}{3}lnZ - f(Z)]-} </math> | + | <math>\Phi_n(Z,E_0,k) = 4{[1+ (\frac{E}{E_0})^2][\frac{1}{4}\phi_1(\gamma)-\frac{1}{3}lnZ - f(Z)]-\frac{2E}{3E_0}} </math> |
Revision as of 19:58, 9 May 2008
The number of photons per MeV per incident electron per
of radiator (Z,A) is given by [*]:,
where
- photon kinetic energy in MeV;- incident electron total energy (in units of the electron rest mass);
- incident photon energy (in units of the electron rest mass);
;
;
;
;
;
;
;
Case A: For
the screening effect is negligible, (free electron form) and in this case .Case B: For
we have, :
Reference: [*] J.L. Matthews, R.O. Owens, Accurate Formulae For the Calculation of High Energy Electron Bremsstrahlung Spectra, NIM III (1973) I57-I68.