Difference between revisions of "Calculation of radiation yield"
Jump to navigation
Jump to search
| Line 17: | Line 17: | ||
<math>\eta = \rho/(\rho+2)</math>; | <math>\eta = \rho/(\rho+2)</math>; | ||
| − | <math>L = 2 ln(\frac{(E_0-1)^{\frac{1}{2}}+[\eta(E_0+1)^{\frac{1}{2}}}{(E_0-1)^{\frac{1}{2}}-[\eta(E_0+1)^{\frac{1}{2}}]})</math> | + | <math>L = 2 ln(\frac{(E_0-1)^{\frac{1}{2}}+[\eta(E_0+1)^{\frac{1}{2}}]}{(E_0-1)^{\frac{1}{2}}-[\eta(E_0+1)^{\frac{1}{2}}]})</math> |
Revision as of 20:04, 8 May 2008
The number of photons per MeV per incident electron per of radiator (Z,A) is given by [*]:
,
where - photon kinetic energy in MeV;
- incident electron total energy (in units of the electron rest mass);
- incident photon energy (in units of the electron rest mass);
;
;
;
;