Difference between revisions of "Calculation of radiation yield"
Jump to navigation
Jump to search
Line 9: | Line 9: | ||
<math>k</math> - incident photon energy (in units of the electron rest mass); | <math>k</math> - incident photon energy (in units of the electron rest mass); | ||
− | <math>\Phi_e(Z,E_0,k) = C_B\{2[1-\frac{2E}{3E_0}+(\frac{E}{E})^2][L-\sqrt{\eta}]+\sqrt{\eta}[1-\frac{L^2}{2\rho}-\frac{1}{\rho^2}(\frac{1}{2}L-[\frac{\rho(\rho+2)(E_0+1)}{E_0-1}]^{\frac{1}{2}})^2]\}</math> | + | <math>\Phi_e(Z,E_0,k) = C_B\{2[1-\frac{2E}{3E_0}+(\frac{E}{E})^2][L-\sqrt{\eta}]+\sqrt{\eta}[1-\frac{L^2}{2\rho}-\frac{1}{\rho^2}(\frac{1}{2}L-[\frac{\rho(\rho+2)(E_0+1)}{E_0-1}]^{\frac{1}{2}})^2]\}</math>; |
− | <math>E = E_0 - k</math> | + | <math>E = E_0 - k</math>; |
− | <math>\rho = E_0 -k(1+E_0-\sqrt{E^2 - 1})</math> | + | <math>\rho = E_0 -k(1+E_0-\sqrt{E^2 - 1})</math>; |
− | <math>\eta = \rho/(\rho+2)</math> | + | <math>\eta = \rho/(\rho+2)</math>; |
Revision as of 19:58, 8 May 2008
The number of photons per MeV per incident electron per
of radiator (Z,A) is given by [*]:,
where
- photon kinetic energy in MeV;- incident electron total energy (in units of the electron rest mass);
- incident photon energy (in units of the electron rest mass);
;
;
;
;