Difference between revisions of "Calculation of radiation yield"
Jump to navigation
Jump to search
| Line 3: | Line 3: | ||
<math>\frac{d^2n}{d\kappa dt} = \frac{3.495 \times 10^{-4}}{A\kappa}[Z^2\Phi_n(Z,E_0,k)+Z\Phi_e(Z,E_0,k)](MeV^{-1}g^{-1}cm^2)</math>, | <math>\frac{d^2n}{d\kappa dt} = \frac{3.495 \times 10^{-4}}{A\kappa}[Z^2\Phi_n(Z,E_0,k)+Z\Phi_e(Z,E_0,k)](MeV^{-1}g^{-1}cm^2)</math>, | ||
| − | where <math>\kappa</math> - photon kinetic energy in MeV | + | where <math>\kappa</math> - photon kinetic energy in MeV; |
| + | |||
| + | <math>k</math> - incident photon energy (in units of the electron rest mass); | ||
<math>\Phi_e(Z,E_0,k) = C_B\{2[1-\frac{2E}{3E_0}+(\frac{E}{E})^2][L-\sqrt{\eta}]+\sqrt{\eta}[1-\frac{L^2}{2\rho}-\frac{1}{\rho^2}(\frac{1}{2}L-[\frac{\rho(\rho+2)(E_0+1)}{E_0-1}]^{\frac{1}{2}})^2]\}</math> | <math>\Phi_e(Z,E_0,k) = C_B\{2[1-\frac{2E}{3E_0}+(\frac{E}{E})^2][L-\sqrt{\eta}]+\sqrt{\eta}[1-\frac{L^2}{2\rho}-\frac{1}{\rho^2}(\frac{1}{2}L-[\frac{\rho(\rho+2)(E_0+1)}{E_0-1}]^{\frac{1}{2}})^2]\}</math> | ||
| + | |||
| + | <math>E = E_0 - k</math> | ||
Revision as of 19:53, 8 May 2008
The number of photons per MeV per incident electron per of radiator (Z,A) is given by [1]:
,
where - photon kinetic energy in MeV;
- incident photon energy (in units of the electron rest mass);